Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Biol ; 18(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34633306

RESUMO

Collective cell migration drives the formation of complex organ systems as well as certain tumour invasions and wound healing processes. A characteristic feature of many migrating collectives is tissue-scale polarity, whereby 'leader' cells at the tissue edge guide 'followers' cells that become assembled into polarized epithelial tissues. In this study, we employed particle image velocimetry (PIV) as a tool to quantitate local dynamics underlying the migration of the posterior lateral line primordium (pLLP) in zebrafish at a short time scale. Epithelial cadherin-EGFP was the fluorescent tracer in time-lapse images for PIV analysis. At the tissue level, global speed and directionality of the primordium were extracted from spatially averaged velocity fields. Interestingly, fluctuating velocity patterns evolve at the mesoscale level, which distinguishes the pseudo-mesenchymal leading front from the epithelialized trailing edge, and superimpose to the global deceleration of the whole primordium during the separation of a protoneuromast. Local velocity fields obtained by PIV proved sensitive to estimate the migration speed and directionality of the pLLP in zebrafish, predicting protoneuromast separation at short time scales. Finally, the PIV approach may be suitable for analysing the dynamics of otherin vivomodels of collective migration.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Movimento Celular , Reologia , Análise Espaço-Temporal
2.
Soft Matter ; 11(31): 6284-93, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26161542

RESUMO

We quantitatively study the transport of E. coli near the walls of confined microfluidic channels, and in more detail along the edges formed by the interception of two perpendicular walls. Our experiments establish the connection between bacterial motion at the flat surface and at the edges and demonstrate the robustness of the upstream motion at the edges. Upstream migration of E. coli at the edges is possible at much larger flow rates compared to motion at the flat surfaces. Interestingly, the speed of bacteria at the edges mainly results from collisions between bacteria moving along this single line. We show that upstream motion not only takes place at the edge but also in an "edge boundary layer" whose size varies with the applied flow rate. We quantify the bacterial fluxes along the bottom walls and the edges and show that they result from both the transport velocity of bacteria and the decrease of surface concentration with increasing flow rate due to erosion processes. We rationalize our findings as a function of local variations in the shear rate in the rectangular channels and hydrodynamic attractive forces between bacteria and walls.


Assuntos
Escherichia coli/fisiologia , Movimento , Hidrodinâmica , Microfluídica
3.
Phys Rev Lett ; 110(26): 268103, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23848926

RESUMO

The viscosity of an active suspension of E. coli bacteria is determined experimentally as a function of the shear rate using a Y-shaped microfluidic channel. From the relative suspension viscosity, we identify rheological thickening and thinning regimes as well as situations at low shear rate where the viscosity of the bacteria suspension can be lower than the viscosity of the suspending fluid. In addition, bacteria concentration and velocity profiles in the bulk are directly measured in the microchannel.


Assuntos
Escherichia coli/química , Escherichia coli/fisiologia , Modelos Biológicos , Técnicas Analíticas Microfluídicas , Reologia , Suspensões , Natação , Viscosidade
4.
Phys Rev Lett ; 106(4): 048102, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21405365

RESUMO

We consider two systems of active swimmers moving close to a solid surface, one being a living population of wild-type E. coli and the other being an assembly of self-propelled Au-Pt rods. In both situations, we have identified two different types of motion at the surface and evaluated the fraction of the population that displayed ballistic trajectories (active swimmers) with respect to those showing randomlike behavior. We studied the effect of this complex swimming activity on the diffusivity of passive tracers also present at the surface. We found that the tracer diffusivity is enhanced with respect to standard Brownian motion and increases linearly with the activity of the fluid, defined as the product of the fraction of active swimmers and their mean velocity. This result can be understood in terms of series of elementary encounters between the active swimmers and the tracers.

5.
Nat Commun ; 11(1): 2851, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503979

RESUMO

The colonization of surfaces by bacteria is a widespread phenomenon with consequences on environmental processes and human health. While much is known about the molecular mechanisms of surface colonization, the influence of the physical environment remains poorly understood. Here we show that the colonization of non-planar surfaces by motile bacteria is largely controlled by flow. Using microfluidic experiments with Pseudomonas aeruginosa and Escherichia coli, we demonstrate that the velocity gradients created by a curved surface drive preferential attachment to specific regions of the collecting surface, namely the leeward side of cylinders and immediately downstream of apexes on corrugated surfaces, in stark contrast to where nonmotile cells attach. Attachment location and rate depend on the local hydrodynamics and, as revealed by a mathematical model benchmarked on the observations, on cell morphology and swimming traits. These results highlight the importance of flow on the magnitude and location of bacterial colonization of surfaces.


Assuntos
Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Modelos Biológicos , Pseudomonas aeruginosa/fisiologia , Fenômenos Biomecânicos , Hidrodinâmica , Técnicas Analíticas Microfluídicas , Movimento/fisiologia , Propriedades de Superfície
6.
Biomicrofluidics ; 14(2): 024108, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32266047

RESUMO

Infertility is a common medical condition encountered by health systems throughout the world. Despite the development of complex in vitro fertilization techniques, only one-third of these procedures are successful. New lab-on-a-chip systems that focus on spermatozoa selection require a better understanding of sperm behavior under ultra-confined conditions in order to improve outcomes. Experimental studies combined with models and simulations allow the evaluation of the efficiency of different lab-on-a-chip devices during the design process. In this work, we provide experimental evidence of the dynamics of sperm interacting with a lateral wall in a shallow chamber. We observe a decrease in average sperm velocity during initial wall interaction and partial recovery after the alignment of the trajectory of the cell. To describe this phenomenon, we propose a simple model for the sperm alignment process with a single free parameter. By incorporating experimental motility characterization into the model, we achieve an accurate description of the average velocity behavior of the sperm population close to walls. These results will contribute to the design of more efficient lab-on-a-chip devices for the treatment of human infertility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA