Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Mol Cell ; 77(4): 734-747.e7, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812350

RESUMO

Mutation and prevalence of pathogenic viruses prompt the development of broad-spectrum antiviral strategies. Viperin is a potent antiviral protein that inhibits a broad range of viruses. Unexpectedly, we found that Viperin protein production in epithelium is defective in response to both viruses and interferons (IFNs). We further revealed that viruses and IFNs stimulate expression of the acetyltransferase HAT1, which induces Lys197-acetylation on Viperin. Viperin acetylation in turn recruits UBE4A that stimulates K6-linked polyubiquitination at Lys206 of Viperin, leading to Viperin protein degradation. Importantly, UBE4A deficiency restores Viperin protein production in epithelium. We then designed interfering peptides (IPs) to inhibit UBE4A binding with Viperin. We found that VIP-IP3 rescues Viperin protein production in epithelium and therefore enhances cellular antiviral activity. VIP-IP3 renders mice more resistant to viral infection. These findings could provide strategies for both enhancing host broad-spectrum antiviral response and improving the efficacy of IFN-based antiviral therapy.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/virologia , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Animais , Linhagem Celular , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Humanos , Interferons/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Peptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
2.
EMBO Rep ; 24(4): e56374, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36876523

RESUMO

ACE2 is a major receptor for cellular entry of SARS-CoV-2. Despite advances in targeting ACE2 to inhibit SARS-CoV-2 binding, strategies to flexibly and sufficiently reduce ACE2 levels for the prevention of SARS-CoV-2 infection have not been explored. Here, we reveal vitamin C (VitC) administration as a potent strategy to prevent SARS-CoV-2 infection. VitC reduces ACE2 protein levels in a dose-dependent manner, while even a partial reduction in ACE2 levels can greatly inhibit SARS-CoV-2 infection. Further studies reveal that USP50 is a crucial regulator of ACE2 levels. VitC blocks the USP50-ACE2 interaction, thus promoting K48-linked polyubiquitination of ACE2 at Lys788 and subsequent degradation of ACE2 without affecting its transcriptional expression. Importantly, VitC administration reduces host ACE2 levels and greatly blocks SARS-CoV-2 infection in mice. This study reveals that ACE2 protein levels are down-regulated by an essential nutrient, VitC, thereby enhancing protection against infection of SARS-CoV-2 and its variants.


Assuntos
COVID-19 , Animais , Camundongos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Ácido Ascórbico/farmacologia
3.
Plant Cell Physiol ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372617

RESUMO

The polyhydroxylated steroid phytohormone brassinosteroids (BRs) control many aspects of plant growth, development and responses to environmental changes. Plasma membrane (PM) H+-ATPase, the well-known PM proton pump, is a central regulator in plant physiology, which mediates not only plant growth and development, but also adaptation to stresses. Recent studies highlight that PM H+-ATPase is at least partly regulated via the BR signaling. Firstly, the BR cell surface receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and multiple key components of BR signaling directly or indirectly influence PM H+-ATPase activity. Secondly, the SMALL AUXIN UP RNA (SAUR) gene family physically interacts with BRI1 to enhance organ development of Arabidopsis by activating PM H+-ATPase. Thirdly, RNA-sequencing (RNA-seq) assays showed that the expression of some SAUR genes is upregulated under the light or sucrose conditions, which is related to the phosphorylation state of the penultimate residue of PM H+-ATPase in a time-course manner. In this review, we describe the structural and functional features of PM H+-ATPase, and summarize recent progress toward understanding the regulatory mechanism of PM H+-ATPase by BRs, and briefly introduce how PM H+-ATPase activity is modulated by its own biterminal regions and the post-translational modifications.

4.
Eur J Immunol ; 53(9): e2350384, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37194705

RESUMO

Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.


Assuntos
Antivirais , Interferon Tipo I , Imunidade Inata , Transdução de Sinais , Ubiquitinação
5.
BMC Plant Biol ; 24(1): 305, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644479

RESUMO

BACKGROUND: Aquaporins (AQPs) facilitate water diffusion across biological membranes and are involved in all phases of growth and development. Small and basic intrinsic proteins (SIPs) belong to the fourth subfamily of the plant AQPs. Although SIPs are widely present in higher plants, reports on SIPs are limited. Rice is one of the major food crops in the world, and water use is an important factor affecting rice growth and development; therefore, this study aimed to provide information relevant to the function and environmental response of the rice SIP gene family. RESULTS: The rice (Oryza sativa L. japonica) genome encodes two SIP-like genes, OsSIP1 and OsSIP2, whose products are predominantly located in the endoplasmic reticulum (ER) membrane but transient localization to the plasma membrane is not excluded. Heterologous expression in a yeast aquaglyceroporin-mutant fps1Δ showed that both OsSIP1 and OsSIP2 made the cell more sensitive to KCl, sorbitol and H2O2, indicating facilitated permeation of water and hydrogen peroxide. In addition, the yeast cells expressing OsSIP2 were unable to efflux the toxic methylamine taken up by the endogenous MEP permeases, but OsSIP1 showed subtle permeability to methylamine, suggesting that OsSIP1 may have a wider conducting pore than OsSIP2. Expression profiling in different rice tissues or organs revealed that OsSIP1 was expressed in all tissues tested, whereas OsSIP2 was preferentially expressed in anthers and weakly expressed in other tissues. Consistent with this, histochemical staining of tissues expressing the promoter-ß-glucuronidase fusion genes revealed their tissue-specific expression profile. In rice seedlings, both OsSIPs were upregulated to varied levels under different stress conditions, including osmotic shock, high salinity, unfavorable temperature, redox challenge and pathogen attack, as well as by hormonal treatments such as GA, ABA, MeJA, SA. However, a reduced expression of both OsSIPs was observed under dehydration treatment. CONCLUSIONS: Our results suggest that SIP-like aquaporins are not restricted to the ER membrane and are likely to be involved in unique membrane functions in substrate transport, growth and development, and environmental response.


Assuntos
Aquaporinas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Retículo Endoplasmático/metabolismo
6.
J Virol ; 97(10): e0078623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796126

RESUMO

IMPORTANCE: EV71 poses a significant health threat to children aged 5 and below. The process of EV71 infection and replication is predominantly influenced by ubiquitination modifications. Our previous findings indicate that EV71 prompts the activation of host deubiquitinating enzymes, thereby impeding the host interferon signaling pathway as a means of evading the immune response. Nevertheless, the precise mechanisms by which the host employs ubiquitination modifications to hinder EV71 infection remain unclear. The present study demonstrated that the nonstructural protein 2Apro, which is encoded by EV71, exhibits ubiquitination and degradation mediated by the host E3 ubiquitin ligase SPOP. In addition, it is the first report, to our knowledge, that SPOP is involved in the host antiviral response.


Assuntos
Cisteína Endopeptidases , Enterovirus Humano A , Infecções por Enterovirus , Interações entre Hospedeiro e Microrganismos , Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitinação , Proteínas Virais , Criança , Humanos , Enterovirus Humano A/enzimologia , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Cisteína Endopeptidases/metabolismo
7.
Plant Cell Environ ; 47(6): 1921-1940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38357785

RESUMO

Multiple organellar RNA editing factor (MORF) complex was shown to be highly associated with C-to-U RNA editing of vascular plant editosome. However, mechanisms by which MORF9-dependent plastid RNA editing controls plant development and responses to environmental alteration remain obscure. In this study, we found that loss of MORF9 function impaired PSII efficiency, NDH activity, and carbohydrate production, rapidly promoted nuclear gene expression including sucrose transporter and sugar/energy responsive genes, and attenuated root growth under sugar starvation conditions. Sugar repletion increased MORF9 and MORF2 expression in wild-type seedlings and reduced RNA editing of matK-706, accD-794, ndhD-383 and ndhF-290 in the morf9 mutant. RNA editing efficiency of ndhD-383 and ndhF-290 sites was diminished in the gin2/morf9 double mutants, and that of matK-706, accD-794, ndhD-383 and ndhF-290 sites were significantly diminished in the snrk1/morf9 double mutants. In contrast, overexpressing HXK1 or SnRK1 promoted RNA editing rate of matK-706, accD-794, ndhD-383 and ndhF-290 in leaves of morf9 mutants, suggesting that HXK1 partially impacts MORF9 mediated ndhD-383 and ndhF-290 editing, while SnRK1 may only affect MORF9-mediated ndhF-290 site editing. Collectively, these findings suggest that sugar and/or its intermediary metabolites impair MORF9-dependent plastid RNA editing resulting in derangements of plant root development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas , Plastídeos , Edição de RNA , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Edição de RNA/genética , Açúcares/metabolismo
8.
Exp Dermatol ; 33(2): e15024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38414091

RESUMO

The available interventions for androgenic alopecia (AGA), the most common type of hair loss worldwide, remain limited. The insulin growth factor (IGF) system may play an important role in the pathogenesis of AGA. However, the exact role of IGF binding protein-related protein 1 (IGFBP-rP1) in hair growth and AGA has not been reported. In this study, we first found periodic variation in IGFBP-rP1 during the hair cycle transition in murine hair follicles (HFs). We further demonstrated that IGFBP-rP1 levels were lower in the serum and scalp HFs of individuals with AGA than in those of healthy controls. Subsequently, we verified that IGFBP-rP1 had no cytotoxicity to human outer root sheath cells (HORSCs) and that IGFBP-rP1 reversed the inhibitory effects of DHT on the migration of HORSCs in vitro. Finally, a DHT-induced AGA mouse model was created. The results revealed that the expression of IGFBP-rP1 in murine HFs was downregulated after DHT treatment and that subcutaneous injection of IGFBP-rP1 delayed catagen occurrence and prolonged the anagen phase of HFs in mice with DHT-induced AGA. The present work shows that IGFBP-rP1 is involved in hair cycle transition and exhibits great therapeutic potential for AGA.


Assuntos
Alopecia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Humanos , Camundongos , Animais , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/farmacologia , Alopecia/tratamento farmacológico , Folículo Piloso
9.
Mol Cell Biochem ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748384

RESUMO

Axis inhibitor protein 1 (AXIN1) is a protein recognized for inhibiting tumor growth and is commonly involved in cancer development. In this study, we explored the potential molecular mechanisms that connect alternative splicing of AXIN1 to the metastasis of hepatocellular carcinoma (HCC). Transcriptome sequencing, RT‒PCR, qPCR and Western blotting were utilized to determine the expression levels of AXIN1 in human HCC tissues and HCC cells. The effects of the AXIN1 exon 9 alternative splice isoform and SRSF9 on the migration and invasion of HCC cells were assessed through wound healing and Transwell assays, respectively. The interaction between SRSF9 and AXIN1 was investigated using UV crosslink RNA immunoprecipitation, RNA pulldown, and RNA immunoprecipitation assays. Furthermore, the involvement of the AXIN1 isoform and SRSF9 in HCC metastasis was validated in a nude mouse model. AXIN1-L (exon 9 including) expression was downregulated, while AXIN1-S (exon 9 skipping) was upregulated in HCC. SRSF9 promotes the production of AXIN1-S by interacting with the sequence of exons 8 and 10 of AXIN1. AXIN1-S significantly promoted HCC cells migration and invasion by activating the Wnt pathway, while the opposite effects were observed for AXIN1-L. In vivo experiments demonstrated that AXIN1-L inhibited HCC metastasis, whereas SRSF9 promoted HCC metastasis in part by regulating the level of AXIN1-S. AXIN1, a tumor suppressor protein that targets the AXIN1/Wnt/ß-catenin signaling axis, may be a promising prognostic factor and a valuable therapeutic target for HCC.

10.
EMBO Rep ; 23(1): e53466, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34779558

RESUMO

High-salt diets have recently been implicated in hypertension, cardiovascular disease, and autoimmune disease. However, whether and how dietary salt affects host antiviral response remain elusive. Here, we report that high salt induces an instant reduction in host antiviral immunity, although this effect is compromised during a long-term high-salt diet. Further studies reveal that high salt stimulates the acetylation at Lys663 of p97, which promotes the recruitment of ubiquitinated proteins for proteasome-dependent degradation. p97-mediated degradation of the deubiquitinase USP33 results in a deficiency of Viperin protein expression during viral infection, which substantially attenuates host antiviral ability. Importantly, switching to a low-salt diet during viral infection significantly enhances Viperin expression and improves host antiviral ability. These findings uncover dietary salt-induced regulation of ubiquitinated cellular proteins and host antiviral immunity, and could offer insight into the daily consumption of salt-containing diets during virus epidemics.


Assuntos
Fatores de Restrição Antivirais/imunologia , Imunidade Inata/efeitos dos fármacos , Cloreto de Sódio na Dieta/efeitos adversos , Viroses , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Ubiquitina Tiolesterase , Ubiquitinação , Viroses/imunologia , Vírus/patogenicidade
11.
Ann Bot ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845347

RESUMO

Plant senescence is an integrated program of plant development that aims to remobilize nutrients and energy from senescing tissues to developing organs under developmental and stress-induced conditions. Upstream in the regulatory network, a small family of single-stranded DNA/RNA-binding proteins known as WHIRLYs occupy a central node, acting at multiple regulatory levels and via trans-localization between the nucleus and organelles. In this review, we summarize the current progress on the role of WHIRLY members in plant development and stress-induced senescence. WHIRLY proteins can be traced back in evolution to green algae. WHIRLY proteins trade off the balance of plant developmental senescence and stress-induced senescence through maintaining organelle genome stability via R-loop homeostasis, repressing the transcription at a configuration condition, recruiting RNA to impact organelle RNA editing and splicing, as evidenced in several species, WHIRLY proteins also act as retrograde signal transducers between organelles and the nucleus through protein modification and stromule or vesicle trafficking. In addition, WHIRLY proteins interact with hormones, ROS and environmental signals to orchestrate cell fate in an age-dependent manner. Finally, prospects for further research and promotion to improve crop production under environmental constraints are highlighted.

12.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33846258

RESUMO

Macrophages are the key regulator of T-cell responses depending on their activation state. C-C motif chemokine receptor-like 2 (CCRL2), a nonsignaling atypical receptor originally cloned from LPS-activated macrophages, has recently been shown to regulate immune responses under several inflammatory conditions. However, whether CCRL2 influences macrophage function and regulates tumor immunity remains unknown. Here, we found that tumoral CCRL2 expression is a predictive indicator of robust antitumor T-cell responses in human cancers. CCRL2 is selectively expressed in tumor-associated macrophages (TAM) with immunostimulatory phenotype in humans and mice. Conditioned media from tumor cells could induce CCRL2 expression in macrophages primarily via TLR4, which is negated by immunosuppressive factors. Ccrl2-/- mice exhibit accelerated melanoma growth and impaired antitumor immunity characterized by significant reductions in immunostimulatory macrophages and T-cell responses in tumor. Depletion of CD8+ T cells or macrophages eliminates the difference in tumor growth between WT and Ccrl2-/- mice. Moreover, CCRL2 deficiency impairs immunogenic activation of macrophages, resulting in attenuated antitumor T-cell responses and aggravated tumor growth in a coinjection tumor model. Mechanically, CCRL2 interacts with TLR4 on the cell surface to retain membrane TLR4 expression and further enhance its downstream Myd88-NF-κB inflammatory signaling in macrophages. Similarly, Tlr4-/- mice exhibit reduced CCRL2 expression in TAM and accelerated melanoma growth. Collectively, our study reveals a functional role of CCRL2 in activating immunostimulatory macrophages, thereby potentiating antitumor T-cell response and tumor rejection, and suggests CCLR2 as a potential biomarker candidate and therapeutic target for cancer immunotherapy.


Assuntos
Ativação de Macrófagos/imunologia , Neoplasias/imunologia , Receptores CCR/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , China , Feminino , Imunização , Ativação de Macrófagos/fisiologia , Masculino , Melanoma/metabolismo , Camundongos , NF-kappa B/metabolismo , Neoplasias/genética , Receptores CCR/genética , Transdução de Sinais , Linfócitos T/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38330583

RESUMO

Objective: The IKZF4(Ikaros family zinc finger 4) gene encodes Eos, a zinc finger transcription factor that belongs to the Ikaros family. High expression of Eos on Treg cells is important for the suppression of autoimmune responses and immune homeostasis. It has been suggested that the SNP in IKZF4 may influence the pathogenesis of AA(alopecia areata). The purpose of this study was to explore the relationship between IKZF4 polymorphism and AA in the Chinese Han population. Methods: We examined 459 patients and 434 controls in this study. The rs1701704 polymorphism was evaluated using HRM analysis and direct sequencing. Results: The prevalence of the C/C, A/C, and A/A genotypes in AA patients was 7.4%, 37.5% and 55.1%, respectively. There were significant differences in genotype distribution and allele frequencies between AA and the control group (P < .0001). The frequency of the C allele in the AA group was significantly higher (P < .0001), and the frequencies of the C allele and C/C genotype in patients with family history were higher (P < .0001; P = .001). Conclusions: The rs1701704 SNP of IKZF4 may be a genetic marker for assessing the risk of AA in the Chinese Han population.

14.
Endocr Res ; : 1-10, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850265

RESUMO

BACKGROUND: The triglyceride-glucose (TyG) index serves as a convenient indicator of insulin resistance, which has been demonstrated to be associated with diabetic retinopathy(DR). However, the relationship between TyG-WHR, a novel index combining TyG with the central obesity indicator WHR, and retinopathy in patients with type 2 diabetes remains unclear. Therefore, this study aims to investigate the correlation between TyG-WHR and DR in adult patients with type 2 diabetes. METHODS: This cross-sectional study included 1702 patients with T2DM. Logistic regression analysis was performed to examine the associations between TyG-WHR and DR. Additionally, the receiver operating characteristic curve (ROC curve) was utilized to assess the predictive efficacy of TyG-WHR for DR. RESULTS: Patients in higher TyG-WHR quartiles demonstrated an increased presence of DR, and TyG-WHR increased with the severity of DR. Moreover, TyG-WHR remained significantly associated with a higher odds ratio (OR) for DR (OR 1.223, 95% confidence interval [CI] 1.078-1.387, p < 0.05) after multivariate adjustment. Additionally, receiver operating characteristic curve analysis indicated that the optimal cutoff value for TyG-WHR in predicting DR presence was 8.8983, with a sensitivity of 61.00%, specificity of 48.50%, and area under the curve (AUC) of 0.555. CONCLUSIONS: In patients with T2DM, TyG-WHR was significantly elevated in those with DR and independently associated with an increased risk of DR presence in Chinese patients. This implies that TyG-WHR could potentially serve as a valuable and dependable biomarker for DR, underscoring the importance of giving greater consideration to T2DM patients with elevated TyG-WHR to effectively prevent and mitigate the onset of DR and associated adverse health outcomes.

15.
Plant J ; 109(1): 126-143, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724261

RESUMO

MicroRNAs negatively regulate gene expression by promoting target mRNA cleavage and/or impairing its translation, thereby playing a crucial role in plant development and environmental stress responses. In Arabidopsis, the MIR840 gene is located within the overlapping 3'UTR of the PPR and WHIRLY3 (WHY3) genes, both being predicted targets of miR840* and miR840, the short maturation products of MIR840. Gain- and loss-of-function of MIR840 in Arabidopsis resulted in opposite senescence phenotypes. The highest expression levels of the MIR840 precursor transcript pre-miR840 were observed at senescence initiation, and pre-miR840 expression is significantly correlated with a reduction in PPR, but not WHY3, transcript levels. Although a reduction of transcript level of PPR, but not WHY3 transcript levels were not significantly affected by MIR840 overexpression, its protein levels were strongly reduced. Mutating the cleavage sites or replacing the target sequences abolishes the miR840*/miR840-mediated degradation of PPR transcripts and accumulation of WHY3 protein. In support for this, concurrent knockdown of both PPR and WHY3 in wild-type plants resulted in a senescence phenotype resembling that of the MIR840-overexpressing plant. This indicates that both PRR and WHY3 are targets in the MIR840-mediated senescence pathway. Moreover, single knockout mutants of PPR and WHY3 show a convergent upregulated subset of senescence-associated genes, which are also found among those induced by MIR840 overexpression. Our data provide evidence for a regulatory role of MIR840 in plant senescence.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Senescência Vegetal/genética , Regiões 3' não Traduzidas/genética , Arabidopsis/fisiologia , Mutação , Fenótipo , RNA de Plantas/genética , Estresse Fisiológico
16.
J Cell Physiol ; 238(12): 2765-2777, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37812578

RESUMO

Glucose metabolic reprogramming, known as the Warburg effect, is one of the metabolic hallmarks of tumor cells. Cancer cells preferentially metabolize glucose by glycolysis rather than mitochondrial oxidative phosphorylation regardless of oxygen availability, but the regulatory mechanism underlying this switch has been incompletely understood. Here, we report that the circular RNA circ ankyrin repeat domain 17 (ANKRD17) functions as a key regulator for glycolysis to promote cell growth, migration, invasion, and cell-cycle progression in breast cancer (BC) cells. We further show that circANKRD17 acts to accelerate glycolysis in BC cells by acting as a sponge for miR-143 and in turn overrides the repressive effect of miR-143, a well-documented glycolytic repressor, on hexokinase 2 in BC cells, thus resulting in enhanced glycolysis in BC cells. These data suggest the circANKRD17-miR-143 cascade as a novel mechanism in controlling glucose metabolic reprogramming in BC cells and suggest circANKRD17 as a promising therapeutic target to interrupt cancerous glycolysis.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Glicólise/genética , Proliferação de Células/genética , Glucose/metabolismo , Proteínas de Ligação a RNA/metabolismo
17.
Immunology ; 170(4): 527-539, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37641430

RESUMO

Skp2 plays multiple roles in malignant tumours. Here, we revealed that Skp2 negatively regulates type-I interferon (IFN-I)-mediated antiviral activity. We first noticed that Skp2 can promote virus infection in cells. Further studies demonstrated that Skp2 interacts with IFN-I receptor 2 (IFNAR2) and promotes K48-linked polyubiquitination of IFNAR2, which accelerates the degradation of IFNAR2 proteins. Skp2-mediated downregulation of IFNAR2 levels inhibits IFN-I signalling and IFN-I-induced antiviral activity. In addition, we uncovered for the first time that the antibiotic ceftazidime can act as a repressor of Skp2. Ceftazidime reduces cellular Skp2 levels, thus enhancing IFNAR2 stability and IFN-I antiviral activity. This study reveals a new role of Skp2 in regulating IFN-I signalling and IFN-I antiviral activity and reports the antibiotic ceftazidime as a potential repressor of Skp2.


Assuntos
Interferon Tipo I , Interferon Tipo I/metabolismo , Ceftazidima , Linhagem Celular , Antivirais/farmacologia , Antibacterianos , Receptor de Interferon alfa e beta
18.
Small ; 19(28): e2207196, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026435

RESUMO

The exploring of economical, high-efficiency, and stable bifunctional catalysts for hydrogen evolution and oxygen evolution reactions (HER/OER) is highly imperative for the development of electrolytic water. Herein, a 3D cross-linked carbon nanotube supported oxygen vacancy (Vo )-rich N-NiMoO4 /Ni heterostructure bifunctional water splitting catalyst (N-NiMoO4 /Ni/CNTs) is synthesized by hydrothermal-H2 calcination method. Physical characterization confirms that Vo -rich N-NiMoO4 /Ni nanoparticles with an average size of ≈19 nm are secondary aggregated on CNTs that form a hierarchical porous structure. The formation of Ni and NiMoO4 heterojunctions modify the electronic structure of N-NiMoO4 /Ni/CNTs. Benefiting from these properties, N-NiMoO4 /Ni/CNTs drives an impressive HER overpotential of only 46 mV and OER overpotential of 330 mV at 10 mA cm-2 , which also shows exceptional cycling stability, respectively. Furthermore, the as-assembled N-NiMoO4 /Ni/CNTs||N-NiMoO4 /Ni/CNTs electrolyzer reaches a cell voltage of 1.64 V at 10 mA cm-2 in alkaline solution. Operando Raman analysis reveals that surface reconstruction is essential for the improved catalytic activity. Density functional theory (DFT) calculations further demonstrate that the enhanced HER/OER performance should be attributed to the synergistic effect of Vo and heteostructure that improve the conductivity of N-NiMoO4 /Ni/CNTs and facilitatethe desorption of reaction intermediates.

19.
J Exp Bot ; 74(21): 6505-6521, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37625033

RESUMO

Chinese narcissus (Narcissus tazetta var. chinensis cv. 'Jinzhanyintai') is one of the 10 most famous traditional flowers of China, having a beautiful and highly ornamental flower with a rich fragrance. However, the flower longevity affects its commercial appeal. While petal senescence in Narcissus is ethylene-independent and abscisic acid-dependent, the regulatory mechanism has yet to be determined. In this study, we identified a R2R3-MYB gene (NtMYB1) from Narcissus tazetta and generated oeNtMYB1 and Ntmyb1 RNA interference mutants in Narcissus as well as an oeNtMYB1 construct in Arabidopsis. Overexpressing NtMYB1 in Narcissus or Arabidopsis led to premature leaf yellowing, an elevated level of total carotenoid, a reduced level of chlorophyll b, and a decrease in photosystem II fluorescence (Fv/Fm). A dual-luciferase assay and chromatin immunoprecipitation-quantitative PCR revealed that NtMYB1 directly binds to the promoter of NtNCED1 or NtNCED2 and activates NtNCED1/2 gene expression both in vitro and in vivo. Moreover, overexpressing NtMYB1 accelerated abscisic acid biosynthesis, up-regulated the content of zeatin and abscisic acid, and down-regulated the level of ß-carotene and gibberellin A1, leading to petal senescence and leaf yellowing in Narcissus. This study revealed a regulatory process that is fundamentally different between non-photosynthetic organs and leaves.


Assuntos
Ácido Abscísico , Narcissus , Proteínas de Plantas , Ácido Abscísico/metabolismo , Arabidopsis/genética , Flores/genética , Flores/metabolismo , Narcissus/genética , Narcissus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Eur Radiol ; 33(6): 4355-4366, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36522509

RESUMO

OBJECTIVES: We aimed to investigate the role of [68Ga]FAPI-04 and [18F]FDG dual-tracer PET/CT for the initial assessment of gastric cancer and to explore the factors associated with their uptake. METHODS: This study enrolled 62 patients with histopathologically confirmed gastric cancer. We compared the diagnostic performance of [68Ga]FAPI-04, [18F]FDG, and combined dual-tracer PET/CT. The standardized uptake value (SUV) and tumor-to-background ratio (TBR) were also measured, and the factors that influence tracer uptake were analyzed. RESULTS: [68Ga]FAPI-04 PET/CT detected more primary lesions (90.3% vs 77.4%, p = 0.008) and peritoneal metastases (91.7% vs 41.7%, p = 0.031) and demonstrated higher SUVmax and TBR values (p < 0.001) of primary lesions compared to [18F]FDG PET/CT. Dual-tracer PET/CT significantly improved the diagnostic sensitivity for the detection of distant metastases, compared with stand-alone [18F]FDG (97.1% vs 73.5%, p = 0.008) or [68Ga]FAPI-04 (97.1% vs 76.5%, p = 0.016) PET/CT. Subsequently, treatment strategies were changed in nine patients following [68Ga]FAPI-04 and [18F]FDG dual-tracer PET/CT. Nevertheless, [68Ga]FAPI-04 uptake was primarily influenced by the size and invasion depth of the tumor. Both [68Ga]FAPI-04 and [18F]FDG PET/CT showed limited sensitivity for detecting early gastric cancer (EGC) (37.5% vs 25.0%, p > 0.05). CONCLUSIONS: In this initial study, [68Ga]FAPI-04 and [18F]FDG dual-tracer PET/CT were complementary and improved sensitivity for the detection of distant metastases pre-treatment in gastric cancer and could improve treatment stratification in the future. [68Ga]FAPI-04 had limited efficacy in detecting EGC. KEY POINTS: • [68Ga]FAPI-04 and [18F]FDG dual-tracer PET/CT are complementary to each other for improving diagnostic sensitivity in the initial evaluation of distant metastases from gastric cancer. • [68Ga]FAPI-04 PET/CT showed limited sensitivity in detecting EGC. • Need for further validation in a larger multi-centre prospective study.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Radioisótopos de Gálio , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA