Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Plant Cell ; 34(11): 4554-4568, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35972347

RESUMO

Wounded plant cells can form callus to seal the wound site. Alternatively, wounding can cause adventitious organogenesis or somatic embryogenesis. These distinct developmental pathways require specific cell fate decisions. Here, we identify GhTCE1, a basic helix-loop-helix family transcription factor, and its interacting partners as a central regulatory module of early cell fate transition during in vitro dedifferentiation of cotton (Gossypium hirsutum). RNAi- or CRISPR/Cas9-mediated loss of GhTCE1 function resulted in excessive accumulation of reactive oxygen species (ROS), arrested callus cell elongation, and increased adventitious organogenesis. In contrast, GhTCE1-overexpressing tissues underwent callus cell growth, but organogenesis was repressed. Transcriptome analysis revealed that several pathways depend on proper regulation of GhTCE1 expression, including lipid transfer pathway components, ROS homeostasis, and cell expansion. GhTCE1 bound to the promoters of the target genes GhLTP2 and GhLTP3, activating their expression synergistically, and the heterodimer TCE1-TCEE1 enhances this activity. GhLTP2- and GhLTP3-deficient tissues accumulated ROS and had arrested callus cell elongation, which was restored by ROS scavengers. These results reveal a unique regulatory network involving ROS and lipid transfer proteins, which act as potential ROS scavengers. This network acts as a switch between unorganized callus growth and organized development during in vitro dedifferentiation of cotton cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Reprogramação Celular , Regulação da Expressão Gênica de Plantas , Gossypium , Organogênese Vegetal , Proteínas de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Metabolismo dos Lipídeos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Elementos Facilitadores Genéticos , Multimerização Proteica , Reprogramação Celular/genética , Organogênese Vegetal/genética
2.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175702

RESUMO

Pinellia ternata (Thunb.) Breit. (P. ternata) is a very important plant that is commonly used in traditional Chinese medicine. Its corms can be used as medicine and function to alleviate cough, headache, and phlegm. The epidermis of P. ternata corms is often light yellow to yellow in color; however, within the range of P. ternata found in JingZhou City in Hubei Province, China, there is a form of P. ternata in which the epidermis of the corm is red. We found that the total flavonoid content of red P. ternata corms is significantly higher than that of yellow P. ternata corms. The objective of this study was to understand the molecular mechanisms behind the difference in epidermal color between the two forms of P. ternata. The results showed that a high content of anthocyanidin was responsible for the red epidermal color in P. ternata, and 15 metabolites, including cyanidin-3-O-rutinoside-5-O-glucoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside, were screened as potential color markers in P. ternata through metabolomic analysis. Based on an analysis of the transcriptome, seven genes, including PtCHS1, PtCHS2, PtCHI1, PtDFR5, PtANS, PtUPD-GT2, and PtUPD-GT3, were found to have important effects on the biosynthesis of anthocyanins in the P. ternata corm epidermis. Furthermore, two transcription factors (TFs), bHLH1 and bHLH2, may have regulatory functions in the biosynthesis of anthocyanins in red P. ternata corms. Using an integrative analysis of the metabolomic and transcriptomic data, we identified five genes, PtCHI, PtDFR2, PtUPD-GT1, PtUPD-GT2, and PtUPD-GT3, that may play important roles in the presence of the red epidermis color in P. ternata corms.


Assuntos
Pinellia , Transcriptoma , Antocianinas/genética , Antocianinas/metabolismo , Pinellia/genética , Perfilação da Expressão Gênica , Glucosídeos/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5474-5486, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-38114140

RESUMO

This study is based on ultra-high-performance liquid chromatography(UPLC), gas chromatography-mass spectrometry(GC-MS), and network pharmacology methods to analyze and predict potential quality markers(Q-markers) of Artemisiae Argyi Folium. First, UPLC and GC-MS techniques were used to analyze the content of 12 non-volatile components and 8 volatile components in the leaves of 33 Artemisia argyi germplasm resources as candidate Q-markers. Subsequently, network pharmacology was employed to construct a "component-target-pathway-efficacy" network to screen out core Q-markers, and the biological activity of the markers was validated using molecular docking. Finally, cluster analysis and principal component analysis were performed on the content of Q-markers in the 33 A. argyi germplasm resources. The results showed that 18 candidate components, 60 targets, and 185 relationships were identified, which were associated with 72 pathways related to the treatment of 11 diseases and exhibited 5 other effects. Based on the combination of freedom and component specificity, six components, including eupatilin, cineole, ß-caryophyllene, dinatin, jaceosidin, and caryophyllene oxide were selected as potential Q-markers for Artemisiae Argyi Folium. According to the content of these six markers, cluster analysis divided the 33 A. argyi germplasm resources into three groups, and principal component analysis identified S14 as having the highest overall quality. This study provides a reference for exploring Q-markers of Artemisiae Argyi Folium, establishing a quality evaluation system, further studying its pharmacological mechanisms, and breeding new varieties.


Assuntos
Artemisia , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Farmacologia em Rede , Melhoramento Vegetal , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Gasosa-Espectrometria de Massas , Artemisia/química , Medicamentos de Ervas Chinesas/química
4.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3730-3735, 2023 Jul.
Artigo em Zh | MEDLINE | ID: mdl-37475064

RESUMO

Artemisia stolonifera is a relative of A. argyi. The two species are difficult to be distinguished due to the similarity in leaf shape and have even less distinctive features after processing. This study aims to establish a method to quickly distinguish between them. At the same time, we examined the reasonability and applicability of the specific polymerase chain reaction(PCR) method. The C/T single nucleotide polymorphism was detected at the position 202 of the sequence, based on which specific primers were designed to identify these two species. The PCR with the specific primer JNC-F and the universal primer ITS3R produced a specific band at 218 bp for A. argyi and no band for A. stolonifera, which can be used to detect at least 3% of A. argyi samples mixed in A. stolonifera samples. The PCR with the specific primer KY-F and the universal primer ITS3R produced a specific band at 218 bp for A. stolonifera and no band for A. argyi, which can be used to detect at least 5% of A. stolonifera samples mixed with A. argyi. The limit of detection of the established method was 5 ng DNA. The established PCR method can accurately distinguish between A. stolonifera and A. argyi, which provides an experimental basis for the quality control of A. stolonifera and determines whether the herbs are adulterated.


Assuntos
Artemisia , Artemisia/genética , Tricomas , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico , Folhas de Planta/genética
5.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5162-5171, 2023 Oct.
Artigo em Zh | MEDLINE | ID: mdl-38114106

RESUMO

This study aims to investigate the impact of the invasive pest Corythucha marmorata on the growth and quality of Artemi-sia argyi. The signs of insect damage at the cultivation base of A. argyi in Huanggang, Hubei were observed. The pests were identified based on morphological and molecular evidence. The pest occurrence pattern and damage mechanism were investigated. Electron microscopy, gas chromatography-mass spectrometry(GC-MS), and high performance liquid chromatography(HPLC) were employed to analyze the microstructure, volatile oils, and flavonoid content of the pest-infested leaves. C. marmorata can cause destructive damage to A. argyi. Small decoloring spots appeared on the leaf surface at the initial stage of infestation. As the damage progressed, the spots spread along the leaf veins and aggregated into patches, causing yellowish leaves and even brownish yellow in the severely affected areas. The insect frequently appeared in summer because it thrives in hot dry conditions. After occurrence on the leaves, microscopic examination revealed that the front of the leaves gradually developed decoloring spots, with black oily stains formed by the black excrement attaching to the glandular hairs. The leaf flesh was also severely damaged, and the non-glandular hairs were broken, disor-ganized, and sticky. The content of neochlorogenic acid, cryptochlorogenic acid, isochlorogenic acids A and B, hispidulin, jaceosidin, and eupatilin at the early stage of infestation was significantly higher than that at the middle stage, and the content decreased at the last stage of infestation. The content of eucalyptol, borneol, terpinyl, and caryophyllin decreased in the moderately damaged leaves and increased in the severely damaged leaves. C. marmorata was discovered for the first time on A. argyi leaves in this study, and its prevention and control deserves special attention. The germplasm materials resistant to this pest can be used to breed C. marmorata-resis-tant A. argyi varieties.


Assuntos
Artemisia , Óleos Voláteis , Artemisia/química , Melhoramento Vegetal , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/análise , Cromatografia Líquida de Alta Pressão , Folhas de Planta/química
6.
BMC Plant Biol ; 22(1): 368, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35879664

RESUMO

BACKGROUND: Allelopathy is expressed through the release of plant chemicals and is considered a natural alternative for sustainable weed management. Artemisia argyi (A. argyi) is widely distributed throughout Asia, and often dominates fields due to its strong allelopathy. However, the mechanism of A. argyi allelopathy is largely unknown and need to be elucidated at the physiological and molecular levels. RESULTS: In this study, we used electron microscopy, ionomics analysis, phytohormone profiling, and transcriptome analysis to investigate the physiological and molecular mechanisms of A. argyi allelopathy using the model plant rice (Oryza sativa) as receptor plants. A. argyi water extract (AAWE)-treated rice plants grow poorly and display root morphological anomalies and leaf yellowing. We found that AAWE significantly inhibits rice growth by destroying the root and leaf system in multiple ways, including the integrity of ultrastructure, reactive oxygen species (ROS) homeostasis, and the accumulation of soluble sugar and chlorophyll synthesis. Further detection of the hormone contents suggests that AAWE leads to indole-3-acetic acid (IAA) accumulation in roots. Moreover, ionomics analysis shows that AAWE inhibits the absorption and transportation of photosynthesis-essential mineral elements, especially Mg, Fe, and Mn. In addition, the results of transcriptome analysis revealed that AAWE affects a series of crucial primary metabolic processes comprising photosynthesis in rice plants. CONCLUSIONS: This study indicates that A. argyi realizes its strongly allelopathy through comprehensive effects on recipient plants including large-scale IAA synthesis and accumulation, ROS explosion, damaging the membrane system and organelles, and obstructing ion absorption and transport, photosynthesis and other pivotal primary metabolic processes of plants. Therefore, AAWE could potentially be developed as an environmentally friendly botanical herbicide due to its strong allelopathic effects.


Assuntos
Artemisia , Oryza , Alelopatia , Hormônios/metabolismo , Oryza/metabolismo , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo
7.
Plant Biotechnol J ; 20(10): 1902-1915, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689517

RESUMO

Artemisia argyi, as famous as Artemisia annua, is a medicinal plant with huge economic value in the genus of Artemisia and has been widely used in the world for about 3000 years. However, a lack of the reference genome severely hinders the understanding of genetic basis for the active ingredient synthesis of A. argyi. Here, we firstly report a complex chromosome-level genome assembly of A. argyi with a large size of 8.03 Gb, with features of high heterozygosity (2.36%), high repetitive sequences (73.59%) and a huge number of protein-coding genes (279 294 in total). The assembly reveals at least three rounds of whole-genome duplication (WGD) events, including a recent WGD event in the A. argyi genome, and a recent burst of transposable element, which may contribute to its large genome size. The genomic data and karyotype analyses confirmed that A. argyi is an allotetraploid with 34 chromosomes. Intragenome synteny analysis revealed that chromosomes fusion event occurred in the A. argyi genome, which elucidates the changes in basic chromosome numbers in Artemisia genus. Significant expansion of genes related to photosynthesis, DNA replication, stress responses and secondary metabolism were identified in A. argyi, explaining the extensive environmental adaptability and rapid growth characteristics. In addition, we analysed genes involved in the biosynthesis pathways of flavonoids and terpenoids, and found that extensive gene amplification and tandem duplication contributed to the high contents of metabolites in A. argyi. Overall, the reference genome assembly provides scientific support for evolutionary biology, functional genomics and breeding in A. argyi and other Artemisia species.


Assuntos
Artemisia , Artemisia/genética , Cromossomos , Elementos de DNA Transponíveis , Flavonoides , Melhoramento Vegetal , Metabolismo Secundário , Terpenos
8.
J Appl Microbiol ; 132(2): 1343-1356, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34496104

RESUMO

AIMS: This study investigated the antifungal activity and mechanisms of ethyl acetate extract of Artemisia argyi (EAAA) against Verticillium dahliae. METHODS AND RESULTS: Optical and scanning electron microscopy observation showed that 2.0 mg ml-1 EAAA treatment reduced spore germination rate to 4.56%. Histochemical staining showed that 2.0 mg ml-1 EAAA treatment increased reactive oxygen species (ROS) by more than two times. Physiological test showed that EAAA treatment decreased the contents of soluble proteins and sugars, and reduced the activities of malate dehydrogenase and succinate dehydrogenase by nearly half. Transcriptome analysis showed that EAAA treatment down-regulated the expression of genes involved in primary metabolic pathways of V. dahliae. CONCLUSIONS: Our results revealed that EAAA inhibited the growth and development of V. dahliae from multiple levels and multiple targets, including inhibiting the germination and development of V. dahliae spores, destroying the structure of cell membranes, inducing ROS burst, reducing the activities of respiratory-related enzymes and down-regulating the expression of genes in primary metabolic pathways. SIGNIFICANCE AND IMPACT OF THE STUDY: The mechanism of the multitarget effects of EAAA against V. dahliae may limit the potential of fungus developing resistance and provide the efficient methods to control verticillium wilt disease in the future.


Assuntos
Artemisia , Verticillium , Acetatos , Antifúngicos/farmacologia , Ascomicetos , Resistência à Doença , Gossypium , Humanos , Doenças das Plantas
9.
Curr Microbiol ; 79(10): 312, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088521

RESUMO

Wolfiporia cocos is a saprophytic fungus belonging to the phylum Basidiomycota. The dried sclerotium of this organism has been widely used in traditional Chinese medicine for several thousand years and it is prescribed in many formulations. The W. cocos germplasm resources are complex and diverse, and the molecular mechanisms underlying the growth and development of its sclerotia are unclear. In this study, we used genome resequencing and transcriptome analysis to evaluate the genetic diversity of W. cocos germplasm resources in China and the mechanism of sclerotium growth and development. Phylogenetic and population structure analyses revealed that all the 39 tested strains were divided into three major groups. Most of the strains were clustered into one group, and the remaining strains were clustered into the other two groups. There may be a shared origin of cultivated W. cocos in the main production areas. Transcriptome analysis and quantitative reverse transcription-polymerase chain reaction confirmed that candidate genes related to the yield of W. cocos were mainly enriched in oxidation-reduction and carbohydrate metabolism and highly expressed in the ShenChuan strain, which had the highest comprehensive cultivation score. The findings will be helpful for further understanding the evolution and population structure of W. cocos and determining the functional genes that contribute to the high yield of sclerotia.


Assuntos
Wolfiporia , Perfilação da Expressão Gênica , Variação Genética , Filogenia , Análise de Sequência de DNA , Wolfiporia/genética
10.
Plant Dis ; 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350726

RESUMO

Prunella vulgaris L. is a perennial herb plant of the Lamiaceae family, and its dried spicas have been widely used as medicine, health-promoting food or tea around the world. P. vulgaris is distributed all over the world, such as Europe, Asia, northwestern Africa and North America, as well as the Huaihe River Basin and the middle and lower Yangtze River Basin in China. In February 2022, a serious disease like gray mold occurred in planting fields of P. vulgaris in Wuhan, Hubei (N30°27'07″, E114°15'49″), causing approximately 20% of plants were diseased in the field. Early symptoms were characterized by small, round gray-brown lesions on the leaves of P. vulgaris. Later, a large number of stems and leaves are wilted or necrotic, associated with wet rot and waterlogged spots and covered with light gray or grayish white flocculent mildew layer. To determine the causal agent of disease, 10 plants with the typical symptoms were collected from fields. The stems and leaves of diseased plants were cut into pieces (2 to 3 mm×5 mm), disinfected with 75% ethanol for 3 minutes, rinsed 3 times with sterile water. Each lesion sample was isolated and purified using separate PDA petri dishes at 25°C, and ultimately all samples yielded morphologically consistent pure strain colonies. From the 10 isolates obtained, XKC-1 was chosen as a representative isolate for further study. XKC-1 colonies showed gray aerial mycelia, which were fast-growing and grew over the whole plate (9 cm) after 4 days. In addition, some black and hard sclerotia (1.88±0.94 mm, n=50) with round or irregular shape developed on the colonies after approximately 10 days of incubation at 25°C (Fig. 2A, B). XKC-1 showed branched conidiophores with enlarged apical cells and numerous conidia (Fig. 2C). Unicellular conidia were colorless or gray, ellipsoid or ovoid, smooth and 7.91-12.38 µm × 10.08-13.82 µm (n=30) in size (Fig. 2D). Based on morphological characteristics, the isolate was initially identified as Botrytis sp. (Ellis 1971). To further identify the species, the genomic DNA of XKC-1 was extracted, and the ITS, LSU and G3PDH genes were amplified with the primers ITS1/ITS4, LROR/LR5 (Zhou et al. 2022) and G3PDH-F/G3PDH-R (Jin et al. 2022), respectively. The results indicated that the ITS (ON090404), LSU (ON090417), and G3PDH (ON169893) sequences were 99.80%, 100% and 99.46% identical to the sequences of Botrytis cinerea Pers. strain (MK370693.1, MN148533.1, MN630267.1), respectively. A phylogenetic tree constructed based on a concatenated sequence (ITS, LSU, G3PDH) using the neighbor-joining method in MEGA7 (Tamura et al. 2013) revealed that XKC-1 grouped with concatenated sequences from three representative B. cinerea isolates in GenBank. Based on the morphological characteristics and molecular identification, the strain XKC-1 was identified as Botrytis cinerea. For pathogenicity tests on detached leaves, 5 mm PDA cakes prepared from XKC-1 were placed on the leaves obtained from healthy P. vulgaris after wounding with a needle (n=10), while PDA medium without mycelia were used as control (25 ± 2°C) (Li et al.2020). Mycelia began to germinate and infect plant tissues at 1 dpi. A large part of the leaves showed water soaked spots covered with mycelia on the surface at 4 dpi. For whole plant inoculations, stem bases of five P. vulgaris seedlings were pierced with sterile needle, and then inoculated with three XKC-1 mycelium PDA cakes. Five plants were inoculated with three PDA cakes without mycelia as a control. After 2-4 days, lesions appeared on the leaves and covered with a gray-white mycelial layer, similar to those observed in the field. However, controls remained symptom free. The pathogen was reisolated from the diseased tissues, the colonies, microscopic characteristics and molecular identification were consistent with those of XKC-1. To our knowledge, this is a first report of B. cinerea causing gray mold on P. vulgaris in Hubei, China. This report would provide resources and reference for controlling of the increased incidence and economic losses of gray mold on P. vulgaris.

11.
Plant Dis ; 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36548919

RESUMO

Cynanchum stauntonii is a perennial herb plant of the Asclepiadaceae family. The dried roots and rhizomes have been used as medicine in China for 1500 years and are considered a remedy for cough and phlegm. In recent years, the wild C. stauntonii resources have not been sufficient for market demand, therefore, a large artificial cultivation area was established in Xinzhou, Tuanfeng and Macheng in Hubei province. In March and April 2022, serious outbreaks of seedling blight were observed in C. stauntonii in Xinzhou county (N30°48'12″, E114°49'24″), and the disease occurred on 10 to 15% of plants in five C. stauntonii nursery beds. Early symptoms included withered tips, chlorosis, stunting, yellow leaves and leaf drop, and later, seedlings die in patches. To determine the causal agent of disease, pieces (5 mm × 5 mm) of diseased tissue at the junction of disease and healthy tissue were surface disinfected by soaking in 75% ethanol for 3 min, rinsed three times with sterilized water, and pieces were placed on PDA at 25°C. Fungal isolates obtained were yellow-brown at the center and pink to white toward the periphery, and dark red pigments were observed in the agar. Isolates were cultured in synthetic low nutrient agar (SNA) and carnation leaf agar to observe the spore morphology. The macroconidia were sickle-shaped with 3-4 septate, with sizes of 30.26±2.36×3.77±0.53 µm on SNA and 33.52±2.20×3.81±0.48 µm on carnation leaf agar (n=30). Morphological characteristics of the isolates were consistent with those of Fusarium sp in the Fusarium Laboratory Manual (Leslie et al. 2006). Furthermore, the genomic DNA from a representative isolate BQ-2 was extracted, the ITS, TEF-1α, RPB1 and RPB2 genes were amplified with primers ITS1/ITS4, EF1/EF2, Fa/G2R and 5F2/7cr, respectively (Zhang et al. 2022). BLAST analysis showed that the ITS (ON935780.1), TEF-1α (OP985126.1), RPB1 (OP985125.1) and RPB2 (OP985124.1) amplicon sequence were 99.44%, 98.94%, 99.88% and 100% identical to the sequences of F. tricinctum strain (KU350724.1, AB674264.1, LC701712.1, MW474678.1), respectively. A phylogenetic tree constructed based on a concatenated sequence (ITS, TEF-1α, RPB1, RPB2) using the neighbor-joining and maximum likelihood method in MEGA7 revealed that BQ-2 grouped with concatenated sequences from four representative F. tricinctum isolates in GenBank. Based on the morphological characteristics and molecular identification, the strain BQ-2 was identified as F. tricinctum. For pathogenicity tests, 5 mm pieces of a BQ-2 colony on PDA were placed on excised leaves of healthy C. stauntonii wounded with a needle (n=5) and kept at 25±2℃. Leaves treated PDA were used as a control (Li et al.2020). After three days inoculation, the mycelia proliferated and began to infect leaf tissues. Ten days later, large parts of the detached leaves were extensively infested with the pathogen and brown. For live plant inoculation, stem bases of five healthy seedlings were punctured with sterile needle and then inoculated with BQ-2 mycelia from PDA. Controls were treated with only PDA. The seedlings began wilting after three days and at five days showed typical disease symptoms, similar to those observed in the field. The controls were asymptomatic. The pathogen was reisolated from the diseased tissues, and the colonies and microscopic characteristics were similar to those of BQ-2. To the best of our knowledge, this is the first report of F. tricinctum causing seedling blight on C. stauntonii in China. This report will provide resources and reference for controlling the increased incidence and economic losses of seedling blight on C. stauntonii.

12.
Zhongguo Zhong Yao Za Zhi ; 47(5): 1215-1221, 2022 Mar.
Artigo em Zh | MEDLINE | ID: mdl-35343147

RESUMO

In Hezhang county, Guizhou province, black spot tends to occur to Aconitum carmichaelii in the hot rainy summer, with the incidence up to 50%-70%, seriously impacting the yield and quality of the medicinal material. Thus, this study aims to clarify the pathogen and the occurrence characteristics. To be specific, the pathogen was isolated and identified according to Koch's postulates and the pathogenicity and biological characteristics were determined. In addition, the sensitivity of the pathogen to four microbial fungicides, four botanical fungicides, and five chemical fungicides was determined with the mycelium growth rate method for the purpose of screening out optimal fungicides. The pathogen was identified as Alternaria alternate, as evidenced by the similar colony morphology and microscopic characteristics and 99.55%-100% similarity in sequences of rDNA-ITS, LSU, 18S, and TEF of the two. The optimum growth conditions for A. alternata were 28 ℃, pH 8, and continuous darkness. Bacillus subtilis had strong inhibitory effect on the pathogen, and the inhibition rate was more than 90% when the concentration was 1 mg·L~(-1). In addition, difenoconazole and quinoline copper can also control the pathogen, with median effective concentration(EC_(50)) of 2.92 and 9.02 mg·L~(-1), respectively. This study lays a theoretical basis for the field control of black spot in A. carmichaelii.


Assuntos
Aconitum , Fungicidas Industriais , Alternaria , Fungicidas Industriais/farmacologia , Micélio
13.
Zhongguo Zhong Yao Za Zhi ; 47(11): 2915-2923, 2022 Jun.
Artigo em Zh | MEDLINE | ID: mdl-35718512

RESUMO

This study aims to clarify the species and biological characteristics of the pathogen causing southern blight in Aster tataricus and screen out effective fungicides for the prevention and control of this disease. We collected the typical diseased plants and sclerotia on soil surface for the isolation of the pathogen, and identified the pathogen based on morphological characteristics, molecular biological characteristics, and pathogenicity. Further, we evaluated the inhibitory effects of 12 fungicides on the pathogen by plate growth inhibition assay. In the diseased plants, watery brown spots first appeared at the stem base and then spread upward, which were covered with white mycelia and surrounded by white to yellow-brown sclerotia. From the diseased plants, 15 strains with consistent traits were isolated. The pathogen was identified as Athelia rolfsii based on morphological characteristics and ITS and TEF sequences. The pathogenicity test was carried out according to Koch's rule, which showed the disease symptoms consistent with those in the field. The pathogen presented the optimum growth at 28-30 ℃, pH 5-8, and full darkness. The preliminary indoor screening demonstrated that four chemical fungicides(taifujin, hymexazol, flusilazole, and lime-sulphur-synthelic-solution), two botanical fungiticides(ethylicin and garlic oil), and a microbial agent(Bacillus subtilis) had good inhibitory effects on A. rolfsii. The results of gradient inhibition experiments showed that B. subtilis, flusilazole, and ethylicin had stronger inhibitory activity. The further in vivo screening indicated that ethylicin can be used as the main fungicide for the prevention and treatment of southern blight in A. tataricus.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Pesquisa , Virulência
14.
Zhongguo Zhong Yao Za Zhi ; 47(4): 880-888, 2022 Feb.
Artigo em Zh | MEDLINE | ID: mdl-35285186

RESUMO

To clarify the content characteristics of mineral elements in different Artemisia argyi germplasm resources and their relationship with the quality properties of Artemisiae Argyi Folium, this study measured the content of 10 mineral elements including nitrogen(N), phosphorus(P), potassium(K), calcium(Ca), magnesium(Mg), aluminum(Al), manganese(Mn), iron(Fe), copper(Cu), and zinc(Zn) in 100 Artemisia argyi germplasm samples. Besides, their relationship with the quality properties of Artemisiae Argyi Folium was explored by correlation analysis, path analysis, and cluster analysis. The results demonstrated that the variation coefficient of the 10 mineral elements in Artemisiae Argyi Folium ranged from 12.23% to 64.38%, and the genetic diversity index from 0.97 to 3.09. The genetic diversities of N, P, and Zn were obvious. As revealed by the correlation analysis, N, P, and K showed strong positive correlations with each other. Except that Mg and Al were negatively correlated, Ca, Mg, Al, Mn, Fe, Cu, and Zn were positively correlated. The correlation analysis of mineral elements with the quality properties of Artemisiae Argyi Folium proved the significant correlations of 17 pairs of characters. According to the path analysis, P, K, Ca, and Mn greatly affected the yield of Artemisiae Argyi Folium, P, K, and Mg the output rate of moxa, N, P, and K the content of total volatile oil, P and K the content of eucalyptol, and P, K, and Ca the content of eupatilin. The 100 germplasm samples were clustered into three groups. Specifically, in cluster Ⅰ, the enrichment capacity of P, K, and Mg elements was strong, and the comprehensive properties of mineral elements were better, implying good development potential. Ca, Mn, Fe, and Zn elements in cluster Ⅱ and N and Al in cluster Ⅲ displayed strong enrichment capacities. This study has provided new ideas for resource evaluation and variety breeding of A. argyi and also reference for fertilizer application.


Assuntos
Artemisia , Artemisia/genética , Ferro , Minerais/análise , Melhoramento Vegetal , Folhas de Planta/química
15.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6042-6049, 2022 Nov.
Artigo em Zh | MEDLINE | ID: mdl-36471928

RESUMO

The leaf spot of Belamcanda chinensis often appears in May to June and spreads rapidly during the flowering stage(July to September) in the cultivation fields, seriously affecting the yield and quality of B. chinensis. To identify and characterize the pathogens of the leaf spot, we isolated two species of Alternaria, identified them according to Koch's postulates, and tested their pathogenicity and biological characteristics. Furthermore, we determined the inhibitory effects of 6 chemical fungicides, 1 plant fungicide, and 3 microbial fungicides on the pathogens by using mycelial growth rate and plate confrontation method to select the appropriate control agents. The results showed that the two pathogens causing B. chinensis leaf spot were Alternaria tenuissima and A. alternata. The conidia of A. tenuissima often formed long chains with no or a few branches, while those of A. alternata often formed short branched chains. The optimum growth temperature of both A. tenuissima and A. alternata was 25 ℃. The two pathogens grew well in alkaline environment. The indoor fungicide screening experiments showed that 40% flusilazole had good inhibitory effects on the two pathogens, with the EC_(50) values of 12.42 mg·L~(-1) and 12.78 mg·L~(-1) for A. tenuissima and A. alternata, respectively. The results of this study provide a theoretical basis for the subsequent theoretical research and field control of B. chinensis leaf spot.


Assuntos
Fungicidas Industriais , Gênero Iris , Fungicidas Industriais/farmacologia , Pesquisa , Esporos Fúngicos , Micélio
16.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5209-5216, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36472027

RESUMO

In summer in 2020, Pinellia ternata in many planting areas in Hubei suffered from serious southern blight, as manifested by the yellowing and wilted leaves and rotten tubers. This study aims to identify the pathogen, clarify the biological characteristics of the pathogen, and screen fungicides. To be specific, the pathogen was isolated, purified, and identified, and the pathogenicity was detected according to the Koch's postulates. Moreover, the biological characteristics of the pathogen were analyzed. Furthermore, PDA plates and seedlings were used to determine the most effective fungicides. The results showed that the mycelia of the pathogen were white and villous with silk luster, which produced a large number of white to black brown sclerotia. The pathogen was identified as Athelia rolfsii by morphological observation and molecular identification based on LSU and TEF gene sequences. The optimum growth conditions for A. rolfsii were 30 ℃ and pH 5-8, and the optimum conditions for the germination of sclerotia were 25 ℃ and pH 7-9. Bacillus subtilis, difenoconazole, and flusilazole were identified as effective fungicides with PDA, and their half maximal effective concentration(EC_(50)) was all less than 5 mg·L~(-1). The effective fungicides screened with the seedlings were hymexazol and difenoconazole. Based on the screening experiments, difenoconazole can be used as the main agent for the prevention and treatment of southern blight.


Assuntos
Fungicidas Industriais , Pinellia , Pinellia/genética , Fungicidas Industriais/farmacologia , Plântula , Bacillus subtilis , Micélio
17.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3738-3748, 2022 Jul.
Artigo em Zh | MEDLINE | ID: mdl-35850830

RESUMO

This study aims to explore the soil fertility in the main Artemisia argyi planting areas in Qichun county.To be specific, the soil physical and chemical properties in the main planting areas of A.argyi in Qichun county were analyzed.On this basis, 12 indexes were selected for principal component analysis(PCA) which was then combined with the norm value of each index and the correlation coefficients between the indexes to establish the minimum data set(MDS).The radar map was plotted to directly demonstrate the level of each index and the comprehensive level of the sampling sites.The comprehensive index model was used to calculate the soil fertility quality index(SFQI) of the total data set(TDS) and MDS(SFQI-TDS and SFQI-MDS, respectively), and linear regression of the two was performed.The results showed that the indexes that made up the MDS for soil fertility evaluation were pH, available potas-sium, available iron, available zinc, available manganese, available copper, and available magnesium.The radar map suggested the greatest difference in soil organic matter and smallest difference in available nitrogen among the 14 sampling sites.Moreover, the overall content of available phosphorus and available iron was high, while that of available nitrogen was the lowest.The SFQI-MDS which was yielded based on the weight of each index in MDS calculated with the norm value was more sensitive and the SFQI had stronger correlation with TDS-SFQI, which can better represent TDS-SFQI.SFQI-MDS was in the range of 0.298-0.784, with the average of 0.565 and variation coefficient of 18.38%.Caohe Town had the highest average SFQI-MDS.Clustering of SFQI-MDS value suggested that the soil fertility can be classified into 4 levels: level Ⅰ(SFQI ≥ 0.677) indicated excellent soil fertility, which accounted for 11.24%(mainly in Qingshi town, Balihu, and Zhangbang town); level Ⅱ(0.571≤SFQI≤0.680) meant good fertility, which made up 43.82%(mainly in Caohe town, Hengche town, and Pengsi town); level Ⅲ(0.466≤SFQI≤0.557) indicated average fertility, which took up 32.58%(mainly in Chidong town and Zhulin town); level Ⅳ(SFQI≤0.421) suggested poor fertility, which accounted for 12.36%(mainly in Guanyao town).It is recommended that nitrogen, potassium, magnesium, and calcium fertilizers should be increased and organic ferti-lizer should be applied for the cultivation of A.argyi in Qichun county to improve soil fertility and soil physical and chemical properties.


Assuntos
Artemisia , Solo , Artemisia/química , Ferro , Magnésio , Nitrogênio/análise , Fósforo , Solo/química
18.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3185-3191, 2022 Jun.
Artigo em Zh | MEDLINE | ID: mdl-35851110

RESUMO

Severe leaf spot on Polygonum cuspidatum was found in the planting base of P. cuspidatum in Fangxian county, Shiyan of Hubei province. To clarify the types of pathogens and their pathogenesis, the present study isolated and purified the pathogen of leaf spot disease of P. cuspidatum according to Koch's postulates, determined the pathogenicity of the pathogen, and investigated its biological characteristics. Meanwhile, the inhibitory effects of 11 types of fungicides on the bacteria were determined according to the mycelium growth rate, and suitable prevention and control drugs were selected. The results showed that the pathogen isolated from the diseased leaves of P. cuspidatum was Phoma rhei by morphological and molecular identification. The colony morphology and microscopic characteristics were the same as those of Ph. rhei. The homology of rDNA-ITS and TEF gene sequences with Ph. rhei reached 99.96% and 99.43%, respectively. The optimal growth temperature of Ph. rhei was 25 ℃, and the optimal pH was 7-10. Furthermore, Ph. rhei grew faster under dark or light conditions. In fungicides, 0.3% eugenol, 250 g·L~(-1) propiconazole, and 33.5% quinoline copper had significant inhibitory effects on the pathogen with EC_(50) values of 57.54, 59.58, 88.69 µg·mL~(-1), respectively. Eugenol is a botanical fungicide, which can be used as a green and environmentally friendly fungicide in the prevention and control of P. cuspidatum. This study reported for the first time that the pathogen of P. cuspidatum leaf spot was Ph. rhei. investigated the biological characteristics of the pathogen, and screened the indoor chemicals, which provided a theoretical basis for the prevention and control of P. cuspidatum leaf spot in production.


Assuntos
Fallopia japonica , Fungicidas Industriais , Ascomicetos , Eugenol , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
19.
Plant Physiol ; 183(1): 236-249, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139477

RESUMO

Calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK)-mediated calcium signaling has been widely reported to function in plant development and various stress responses, particularly in ion homeostasis. Sugars are the most important primary metabolites, and thus sugar homeostasis requires precise regulation. Here, we describe a CBL2-CIPK6-Tonoplast-Localized Sugar Transporter2 (TST2) molecular module in cotton (Gossypium hirsutum) that regulates plant sugar homeostasis, in particular Glc homeostasis. GhCIPK6 is recruited to the tonoplast by GhCBL2 and interacts with the tonoplast-localized sugar transporter GhTST2. Overexpression of either GhCBL2, GhCIPK6, or GhTST2 was sufficient to promote sugar accumulation in transgenic cotton, whereas RNAi-mediated knockdown of GhCIPK6 expression or CRISPR-Cas9-mediated knockout of GhTST2 resulted in significantly decreased Glc content. Moreover, mutation of GhCBL2 or GhTST2 in GhCIPK6-overexpressing cotton reinstated sugar contents comparable to wild-type plants. Heterologous expression of GhCIPK6 in Arabidopsis (Arabidopsis thaliana) also promoted Glc accumulation, whereas mutation of AtTST1/2 in GhCIPK6-overexpressing Arabidopsis similarly reinstated wild-type sugar contents, thus indicating conservation of CBL2-CIPK6-TST2-mediated sugar homeostasis among different plant species. Our characterization of the molecular players behind plant sugar homeostasis may be exploited to improve sugar contents and abiotic stress resistance in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ligação Proteica , Proteínas Quinases/genética
20.
Chem Biodivers ; 18(8): e2100206, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34142430

RESUMO

Chrysanthemum Flos is the prestigious traditional Chinese medicinal material and the popular health drink. This article comprehensively evaluated the chemical constituents, antioxidant activity, and hepatoprotective effects of 25 common chrysanthemum varieties in China. Firstly, we analyzed the chemical compositions of water extracts of chrysanthemum using UPLC/Q-TOF-MS, and identified 29 chemical components. The results displayed that chrysanthemum was rich in chemical constituents, but there were significant differences in the contents of four phenolic acids and five flavonoids among different varieties, and the coefficient of variation (CVs) ranged from 35.96 % to 114.62 %. Then, the antioxidant activities of different chrysanthemums were investigated, respectively via 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and Ferric Reducing Antioxidant Power (FRAP) assays. The spectrum-effect relationships between nine main components and antioxidant activities were investigated to identify the antioxidant constitutes in chrysanthemums. Meanwhile, H2 O2 -induced hepatocyte injury testing showed wide variation in cultivar antioxidant capacity, with Tongchengju (TCJ) producing the best effect (90.32 %), followed by Chuju (CJ; 85.78 %). In addition, the hepatoprotective effects of 8 mainstream varieties were determined by the model of acute alcoholic liver injury. They protected liver from injury by affecting relevant liver function and antioxidant indexes. Huangshangongju (HSG) could decrease aspartate aminotransferase (AST) activity by 39.27 % in liver tissue; Hangju-Fubaiju (HJ-FBJ), Jinsihuangju (JSH), and Chuju (CJ) significantly decreased the malondialdehyde (MDA) content of liver tissue, which reduced by more than 40 %; Jinsihuangju (JSH) of used for tea could double the content of glutathione (GSH) and had the similar effect on superoxide dismutase (SOD) as the positive group, showing significant antioxidant capacity. Therefore, this study confirmed that chrysanthemums are potential resources as antioxidants, functional foods, and medicinal materials. Importantly, it may provide a scientific support for further development and utilization of chrysanthemum, and screen excellent varieties for different demands.


Assuntos
Chrysanthemum/química , Extratos Vegetais/química , Animais , Antioxidantes/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , China , Chrysanthemum/metabolismo , Flores/química , Flores/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , Medicina Tradicional Chinesa , Camundongos , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA