Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(4): 894-905.e13, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29706545

RESUMO

Perceptual decisions require the accumulation of sensory information to a response criterion. Most accounts of how the brain performs this process of temporal integration have focused on evolving patterns of spiking activity. We report that subthreshold changes in membrane voltage can represent accumulating evidence before a choice. αß core Kenyon cells (αßc KCs) in the mushroom bodies of fruit flies integrate odor-evoked synaptic inputs to action potential threshold at timescales matching the speed of olfactory discrimination. The forkhead box P transcription factor (FoxP) sets neuronal integration and behavioral decision times by controlling the abundance of the voltage-gated potassium channel Shal (KV4) in αßc KC dendrites. αßc KCs thus tailor, through a particular constellation of biophysical properties, the generic process of synaptic integration to the demands of sequential sampling.


Assuntos
Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bário/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cicloexanóis/farmacologia , Proteínas de Drosophila/genética , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Masculino , Neurônios/citologia , Neurônios/metabolismo , Técnicas de Patch-Clamp , Receptores Odorantes/metabolismo , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Olfato , Sinapses/metabolismo
2.
Nature ; 568(7751): 230-234, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30894743

RESUMO

The essential but enigmatic functions of sleep1,2 must be reflected in molecular changes sensed by the brain's sleep-control systems. In the fruitfly Drosophila, about two dozen sleep-inducing neurons3 with projections to the dorsal fan-shaped body (dFB) adjust their electrical output to sleep need4, via the antagonistic regulation of two potassium conductances: the leak channel Sandman imposes silence during waking, whereas increased A-type currents through Shaker support tonic firing during sleep5. Here we show that oxidative byproducts of mitochondrial electron transport6,7 regulate the activity of dFB neurons through a nicotinamide adenine dinucleotide phosphate (NADPH) cofactor bound to the oxidoreductase domain8,9 of Shaker's KVß subunit, Hyperkinetic10,11. Sleep loss elevates mitochondrial reactive oxygen species in dFB neurons, which register this rise by converting Hyperkinetic to the NADP+-bound form. The oxidation of the cofactor slows the inactivation of the A-type current and boosts the frequency of action potentials, thereby promoting sleep. Energy metabolism, oxidative stress, and sleep-three processes implicated independently in lifespan, ageing, and degenerative disease6,12-14-are thus mechanistically connected. KVß substrates8,15,16 or inhibitors that alter the ratio of bound NADPH to NADP+ (and hence the record of sleep debt or waking time) represent prototypes of potential sleep-regulatory drugs.


Assuntos
Drosophila melanogaster/fisiologia , Mitocôndrias/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Subunidades Proteicas/metabolismo , Sono/fisiologia , Potenciais de Ação , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Transporte de Elétrons , Metabolismo Energético , Feminino , Proteínas Luminescentes/metabolismo , NADP/metabolismo , Neurônios/metabolismo , Optogenética , Oxirredução , Estresse Oxidativo , Oxirredutases/metabolismo , Subunidades Proteicas/química , Espécies Reativas de Oxigênio , Proteínas Recombinantes de Fusão/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Medicamentos Indutores do Sono , Fatores de Tempo
3.
Annu Rev Cell Dev Biol ; 27: 731-58, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21819234

RESUMO

The absorption of light by bound or diffusible chromophores causes conformational rearrangements in natural and artificial photoreceptor proteins. These rearrangements are coupled to the opening or closing of ion transport pathways, the association or dissociation of binding partners, the enhancement or suppression of catalytic activity, or the transcription or repression of genetic information. Illumination of cells, tissues, or organisms engineered genetically to express photoreceptor proteins can thus be used to perturb biochemical and electrical signaling with exquisite cellular and molecular specificity. First demonstrated in 2002, this principle of optogenetic control has had a profound impact on neuroscience, where it provides a direct and stringent means of probing the organization of neural circuits and of identifying the neural substrates of behavior. The impact of optogenetic control is also beginning to be felt in other areas of cell and organismal biology.


Assuntos
Luz , Rede Nervosa/fisiologia , Neurônios/fisiologia , Estimulação Luminosa , Células Fotorreceptoras/fisiologia , Transdução de Sinais/fisiologia , Animais , Comportamento/fisiologia , Criptocromos/química , Criptocromos/metabolismo , Regulação da Expressão Gênica , Ativação do Canal Iônico/fisiologia , Rede Nervosa/anatomia & histologia , Neurônios/citologia , Células Fotorreceptoras/citologia , Fototropinas/química , Fototropinas/metabolismo , Fitocromo/química , Fitocromo/metabolismo , Rodopsina/química , Rodopsina/metabolismo
4.
Annu Rev Genet ; 50: 571-594, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27732792

RESUMO

Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement.


Assuntos
Técnicas Genéticas , Neurônios/fisiologia , Neurociências/métodos , Animais , Animais Geneticamente Modificados , Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Regiões Promotoras Genéticas , Transgenes
5.
Cell ; 139(2): 405-15, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837039

RESUMO

Dopaminergic neurons are thought to drive learning by signaling changes in the expectations of salient events, such as rewards or punishments. Olfactory conditioning in Drosophila requires direct dopamine action on intrinsic mushroom body neurons, the likely storage sites of olfactory memories. Neither the cellular sources of the conditioning dopamine nor its precise postsynaptic targets are known. By optically controlling genetically circumscribed subsets of dopaminergic neurons in the behaving fly, we have mapped the origin of aversive reinforcement signals to the PPL1 cluster of 12 dopaminergic cells. PPL1 projections target restricted domains in the vertical lobes and heel of the mushroom body. Artificially evoked activity in a small number of identifiable cells thus suffices for programming behaviorally meaningful memories. The delineation of core reinforcement circuitry is an essential first step in dissecting the neural mechanisms that compute and represent valuations, store associations, and guide actions.


Assuntos
Drosophila melanogaster/fisiologia , Animais , Comportamento Animal , Encéfalo/fisiologia , Condicionamento Clássico , Dopamina/metabolismo , Dopamina/fisiologia , Estimulação Elétrica , Memória , Corpos Pedunculados/inervação , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Condutos Olfatórios
6.
Cell ; 133(2): 354-63, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18423205

RESUMO

The differentially spliced transcription factors encoded by the fruitless (fru) gene are key determinants of sexual behavior in Drosophila. They are expressed in a minority of neurons with limited dimorphisms and regulate neural processes that remain largely unknown. Here, we use light-activated ion channels to stimulate fru-expressing neurons in the thoracic-abdominal ganglia, enabling direct functional comparisons of homologous circuitry between sexes. Optical stimulation of males or females initiates the unilateral wing vibrations that normally generate the male courtship song. The pattern-generating circuit operates differently in the two sexes, producing wing movement and sound in both but authentic songs only in males and in females expressing male fru product. A song-like motor program is thus present in females but lies dormant because the neural commands required for song initiation are absent. Supplying such commands artificially reveals fru-specific differences in the internal dynamics of the song generator and sets the stage for exploring their physiological basis.


Assuntos
Drosophila melanogaster/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Feminino , Canais Iônicos/fisiologia , Luz , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Som , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Asas de Animais/metabolismo
7.
J Neurosci ; 41(14): 3054-3067, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33608385

RESUMO

Homeostatic matching of pre- and postsynaptic function has been observed in many species and neural structures, but whether transcriptional changes contribute to this form of trans-synaptic coordination remains unknown. To identify genes whose expression is altered in presynaptic neurons as a result of perturbing postsynaptic excitability, we applied a transcriptomics-friendly, temperature-inducible Kir2.1-based activity clamp at the first synaptic relay of the Drosophila olfactory system, a central synapse known to exhibit trans-synaptic homeostatic matching. Twelve hours after adult-onset suppression of activity in postsynaptic antennal lobe projection neurons of males and females, we detected changes in the expression of many genes in the third antennal segment, which houses the somata of presynaptic olfactory receptor neurons. These changes affected genes with roles in synaptic vesicle release and synaptic remodeling, including several implicated in homeostatic plasticity at the neuromuscular junction. At 48 h and beyond, the transcriptional landscape tilted toward protein synthesis, folding, and degradation; energy metabolism; and cellular stress defenses, indicating that the system had been pushed to its homeostatic limits. Our analysis suggests that similar homeostatic machinery operates at peripheral and central synapses and identifies many of its components. The presynaptic transcriptional response to genetically targeted postsynaptic perturbations could be exploited for the construction of novel connectivity tracing tools.SIGNIFICANCE STATEMENT Homeostatic feedback mechanisms adjust intrinsic and synaptic properties of neurons to keep their average activity levels constant. We show that, at a central synapse in the fruit fly brain, these mechanisms include changes in presynaptic gene expression that are instructed by an abrupt loss of postsynaptic excitability. The trans-synaptically regulated genes have roles in synaptic vesicle release and synapse remodeling; protein synthesis, folding, and degradation; and energy metabolism. Our study establishes a role for transcriptional changes in homeostatic synaptic plasticity, points to mechanistic commonalities between peripheral and central synapses, and potentially opens new opportunities for the development of connectivity-based gene expression systems.


Assuntos
Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/metabolismo , Sinapses/genética , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Antenas de Artrópodes/inervação , Antenas de Artrópodes/metabolismo , Drosophila , Feminino , Expressão Gênica
8.
Nature ; 536(7616): 333-337, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27487216

RESUMO

Sleep disconnects animals from the external world, at considerable risks and costs that must be offset by a vital benefit. Insight into this mysterious benefit will come from understanding sleep homeostasis: to monitor sleep need, an internal bookkeeper must track physiological changes that are linked to the core function of sleep. In Drosophila, a crucial component of the machinery for sleep homeostasis is a cluster of neurons innervating the dorsal fan-shaped body (dFB) of the central complex. Artificial activation of these cells induces sleep, whereas reductions in excitability cause insomnia. dFB neurons in sleep-deprived flies tend to be electrically active, with high input resistances and long membrane time constants, while neurons in rested flies tend to be electrically silent. Correlative evidence thus supports the simple view that homeostatic sleep control works by switching sleep-promoting neurons between active and quiescent states. Here we demonstrate state switching by dFB neurons, identify dopamine as a neuromodulator that operates the switch, and delineate the switching mechanism. Arousing dopamine caused transient hyperpolarization of dFB neurons within tens of milliseconds and lasting excitability suppression within minutes. Both effects were transduced by Dop1R2 receptors and mediated by potassium conductances. The switch to electrical silence involved the downregulation of voltage-gated A-type currents carried by Shaker and Shab, and the upregulation of voltage-independent leak currents through a two-pore-domain potassium channel that we term Sandman. Sandman is encoded by the CG8713 gene and translocates to the plasma membrane in response to dopamine. dFB-restricted interference with the expression of Shaker or Sandman decreased or increased sleep, respectively, by slowing the repetitive discharge of dFB neurons in the ON state or blocking their entry into the OFF state. Biophysical changes in a small population of neurons are thus linked to the control of sleep-wake state.


Assuntos
Drosophila melanogaster/fisiologia , Homeostase , Sono/fisiologia , Animais , Membrana Celular/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Condutividade Elétrica , Feminino , Masculino , Neurotransmissores/metabolismo , Optogenética , Potássio/metabolismo , Canais de Potássio/química , Canais de Potássio/metabolismo , Transporte Proteico , Receptores Dopaminérgicos/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Privação do Sono , Distúrbios do Início e da Manutenção do Sono/fisiopatologia , Fatores de Tempo , Vigília/fisiologia
9.
PLoS Biol ; 12(2): e1001798, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586113

RESUMO

Although neocortical connectivity is remarkably stereotyped, the abundance of some wiring motifs varies greatly between cortical areas. To examine if regional wiring differences represent functional adaptations, we have used optogenetic raster stimulation to map the laminar distribution of GABAergic interneurons providing inhibition to pyramidal cells in layer 2/3 (L2/3) of adult mouse barrel cortex during sensory deprivation and recovery. Whisker trimming caused large, motif-specific changes in inhibitory synaptic connectivity: ascending inhibition from deep layers 4 and 5 was attenuated to 20%-45% of baseline, whereas inhibition from superficial layers remained stable (L2/3) or increased moderately (L1). The principal mechanism of deprivation-induced plasticity was motif-specific changes in inhibitory-to-excitatory connection probabilities; the strengths of extant connections were left unaltered. Whisker regrowth restored the original balance of inhibition from deep and superficial layers. Targeted, reversible modifications of specific inhibitory wiring motifs thus contribute to the adaptive remodeling of cortical circuits.


Assuntos
Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Neocórtex/citologia , Plasticidade Neuronal , Adaptação Fisiológica , Animais , Channelrhodopsins , Técnicas In Vitro , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/fisiologia , Rede Nervosa , Especificidade de Órgãos , Privação Sensorial , Sinapses/fisiologia , Percepção do Tato , Vibrissas/inervação
10.
Nat Commun ; 14(1): 2770, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179392

RESUMO

Perceptual decisions are complete when a continuously updated score of sensory evidence reaches a threshold. In Drosophila, αß core Kenyon cells (αßc KCs) of the mushroom bodies integrate odor-evoked synaptic inputs to spike threshold at rates that parallel the speed of olfactory choices. Here we perform a causal test of the idea that the biophysical process of synaptic integration underlies the psychophysical process of bounded evidence accumulation in this system. Injections of single brief, EPSP-like depolarizations into the dendrites of αßc KCs during odor discrimination, using closed-loop control of a targeted opsin, accelerate decision times at a marginal cost of accuracy. Model comparisons favor a mechanism of temporal integration over extrema detection and suggest that the optogenetically evoked quanta are added to a growing total of sensory evidence, effectively lowering the decision bound. The subthreshold voltage dynamics of αßc KCs thus form an accumulator memory for sequential samples of information.


Assuntos
Odorantes , Olfato , Animais , Olfato/fisiologia , Drosophila/fisiologia , Corpos Pedunculados/fisiologia
11.
J Cell Biol ; 177(3): 374-5, 2007 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-17485485

RESUMO

Gero Miesenböck uses light and genetically encoded sensors and actuators to observe and control neural activity. Having caused headless flies to fly at will, he is set to understand how the nervous system encodes behavior.


Assuntos
Células Fotorreceptoras de Invertebrados/fisiologia , Transdução de Sinais/fisiologia , Membranas Sinápticas/fisiologia , Vesículas Sinápticas/fisiologia , Visão Ocular/fisiologia , Animais , Drosophila melanogaster
12.
Curr Biol ; 31(22): 4911-4922.e4, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34610272

RESUMO

The mushroom bodies of Drosophila contain circuitry compatible with race models of perceptual choice. When flies discriminate odor intensity differences, opponent pools of αß core Kenyon cells (on and off αßc KCs) accumulate evidence for increases or decreases in odor concentration. These sensory neurons and "antineurons" connect to a layer of mushroom body output neurons (MBONs) which bias behavioral intent in opposite ways. All-to-all connectivity between the competing integrators and their MBON partners allows for correct and erroneous decisions; dopaminergic reinforcement sets choice probabilities via reciprocal changes to the efficacies of on and off KC synapses; and pooled inhibition between αßc KCs can establish equivalence with the drift-diffusion formalism known to describe behavioral performance. The response competition network gives tangible form to many features envisioned in theoretical models of mammalian decision making, but it differs from these models in one respect: the principal variables-the fill levels of the integrators and the strength of inhibition between them-are represented by graded potentials rather than spikes. In pursuit of similar computational goals, a small brain may thus prioritize the large information capacity of analog signals over the robustness and temporal processing span of pulsatile codes.


Assuntos
Corpos Pedunculados , Neurônios , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Mamíferos , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Odorantes , Olfato/fisiologia , Sinapses/fisiologia
13.
J Neurosci ; 28(21): 5582-93, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18495892

RESUMO

The hybrid voltage sensor (hVOS) combines membrane-targeted green fluorescent protein and the hydrophobic anion dipicrylamine (DPA) to provide a promising tool for optical recording of electrical activity from genetically defined populations of neurons. However, large fluorescence signals are obtained only at high DPA concentrations (>3 mum) that increase membrane capacitance to a level that suppresses neural activity. Here, we develop a quantitative model of the sensor to guide its optimization and achieved an approximate threefold increase in fractional fluorescence change at a lower DPA concentration of 2 mum. Using this optimized voltage reporter, we perform optical recordings of evoked activity in the Drosophila antennal lobe with millisecond temporal resolution but fail to detect action potentials, presumably because spike initiation and/or propagation are inhibited by the capacitive load added even at reduced DPA membrane densities. We evaluate strategies for potential further improvement of hVOS quantitatively and derive theoretical performance limits for optical voltage reporters in general.


Assuntos
Diagnóstico por Imagem , Proteínas de Fluorescência Verde/metabolismo , Potenciais da Membrana/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular Transformada , Drosophila , Transferência Ressonante de Energia de Fluorescência/métodos , Fluorometria/métodos , Proteínas de Fluorescência Verde/biossíntese , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos da radiação , Modelos Biológicos , Biologia Molecular , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Estimulação Física/métodos , Picratos , Órgãos dos Sentidos/citologia , Transfecção/métodos
14.
Annu Rev Biophys ; 48: 209-229, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30786228

RESUMO

All an animal can do to infer the state of its environment is to observe the sensory-evoked activity of its own neurons. These inferences about the presence, quality, or similarity of objects are probabilistic and inform behavioral decisions that are often made in close to real time. Neural systems employ several strategies to facilitate sensory discrimination: Biophysical mechanisms separate the neuronal response distributions in coding space, compress their variances, and combine information from sequential observations. We review how these strategies are implemented in the olfactory system of the fruit fly. The emerging principles of odor discrimination likely apply to other neural circuits of similar architecture.


Assuntos
Percepção Olfatória , Olfato , Animais , Drosophila , Humanos , Neurônios , Resolução de Problemas
15.
Neuron ; 33(1): 15-22, 2002 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-11779476

RESUMO

To permit direct functional analyses of neural circuits, we have developed a method for stimulating groups of genetically designated neurons optically. Coexpression of the Drosophila photoreceptor genes encoding arrestin-2, rhodopsin (formed by liganding opsin with retinal), and the alpha subunit of the cognate heterotrimeric G protein--an explosive combination we term "chARGe"--sensitizes generalist vertebrate neurons to light. Illumination of a mixed population of neurons elicits action potentials selectively and cell-autonomously in its genetically chARGed members. In contrast to bath-applied photostimulants or caged neurotransmitters, which act indiscriminately throughout the illuminated volume, chARGe localizes the responsiveness to light. Distributed activity may thus be fed directly into a circumscribed population of neurons in intact tissue, irrespective of the spatial arrangement of its elements.


Assuntos
Arrestinas/metabolismo , Proteínas de Drosophila , Proteínas de Ligação ao GTP/metabolismo , Vias Neurais/metabolismo , Fosfoproteínas/metabolismo , Estimulação Luminosa/métodos , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/metabolismo , Visão Ocular/genética , Potenciais de Ação/genética , Animais , Arrestinas/genética , Células Cultivadas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Feto , Proteínas de Ligação ao GTP/genética , Vias Neurais/citologia , Oócitos , Fosfoproteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Retinaldeído/genética , Retinaldeído/metabolismo , Rodopsina/genética , Transgenes/genética , Xenopus
16.
Neuron ; 36(3): 463-74, 2002 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-12408848

RESUMO

Three classes of neurons form synapses in the antennal lobe of Drosophila, the insect counterpart of the vertebrate olfactory bulb: olfactory receptor neurons, projection neurons, and inhibitory local interneurons. We have targeted a genetically encoded optical reporter of synaptic transmission to each of these classes of neurons and visualized population responses to natural odors. The activation of an odor-specific ensemble of olfactory receptor neurons leads to the activation of a symmetric ensemble of projection neurons across the glomerular synaptic relay. Virtually all excited glomeruli receive inhibitory input from local interneurons. The extent, odor specificity, and partly interglomerular origin of this input suggest that inhibitory circuits assemble combinatorially during odor presentations. These circuits may serve as dynamic templates that extract higher order features from afferent activity patterns.


Assuntos
Drosophila melanogaster/citologia , Gânglios dos Invertebrados/citologia , Rede Nervosa/citologia , Neurônios/citologia , Bulbo Olfatório/citologia , Olfato/fisiologia , Transmissão Sináptica/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Gânglios dos Invertebrados/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Marcadores Genéticos/genética , Imuno-Histoquímica , Masculino , Modelos Animais , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Condutos Olfatórios/citologia , Condutos Olfatórios/fisiologia , Proteínas Recombinantes de Fusão , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sinapses/metabolismo , Sinapses/ultraestrutura
17.
Neuron ; 97(2): 378-389.e4, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29307711

RESUMO

Sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila are integral to sleep homeostasis, but how these cells impose sleep on the organism is unknown. We report that dFB neurons communicate via inhibitory transmitters, including allatostatin-A (AstA), with interneurons connecting the superior arch with the ellipsoid body of the central complex. These "helicon cells" express the galanin receptor homolog AstA-R1, respond to visual input, gate locomotion, and are inhibited by AstA, suggesting that dFB neurons promote rest by suppressing visually guided movement. Sleep changes caused by enhanced or diminished allatostatinergic transmission from dFB neurons and by inhibition or optogenetic stimulation of helicon cells support this notion. Helicon cells provide excitation to R2 neurons of the ellipsoid body, whose activity-dependent plasticity signals rising sleep pressure to the dFB. By virtue of this autoregulatory loop, dFB-mediated inhibition interrupts processes that incur a sleep debt, allowing restorative sleep to rebalance the books. VIDEO ABSTRACT.


Assuntos
Drosophila melanogaster/fisiologia , Interneurônios/fisiologia , Sono/fisiologia , Animais , Encéfalo/fisiologia , Ritmo Circadiano , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Homeostase , Hormônios de Inseto/fisiologia , Luz , Locomoção/efeitos da radiação , Masculino , Potenciais da Membrana , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Optogenética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Visão Ocular
18.
J Neurosci ; 26(41): 10380-6, 2006 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17035522

RESUMO

Emerging technologies from optics, genetics, and bioengineering are being combined for studies of intact neural circuits. The rapid progression of such interdisciplinary "optogenetic" approaches has expanded capabilities for optical imaging and genetic targeting of specific cell types. Here we explore key recent advances that unite optical and genetic approaches, focusing on promising techniques that either allow novel studies of neural dynamics and behavior or provide fresh perspectives on classic model systems.


Assuntos
Encéfalo/fisiologia , Marcação de Genes/métodos , Microscopia de Fluorescência/tendências , Rede Nervosa/fisiologia , Óptica e Fotônica/instrumentação , Animais , Humanos , Microscopia de Fluorescência/instrumentação , Rede Nervosa/química , Vias Neurais/química , Vias Neurais/fisiologia
19.
Elife ; 62017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28267430

RESUMO

Ion channel models are the building blocks of computational neuron models. Their biological fidelity is therefore crucial for the interpretation of simulations. However, the number of published models, and the lack of standardization, make the comparison of ion channel models with one another and with experimental data difficult. Here, we present a framework for the automated large-scale classification of ion channel models. Using annotated metadata and responses to a set of voltage-clamp protocols, we assigned 2378 models of voltage- and calcium-gated ion channels coded in NEURON to 211 clusters. The IonChannelGenealogy (ICGenealogy) web interface provides an interactive resource for the categorization of new and existing models and experimental recordings. It enables quantitative comparisons of simulated and/or measured ion channel kinetics, and facilitates field-wide standardization of experimentally-constrained modeling.


Assuntos
Biologia Computacional/métodos , Canais Iônicos/classificação , Canais Iônicos/metabolismo , Neurônios/química , Neurônios/fisiologia , Bases de Dados Factuais , Modelos Neurológicos
20.
Curr Opin Neurobiol ; 14(3): 395-402, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15194122

RESUMO

Guided by the notion that biology itself offers some of the most incisive tools for studying biological systems, neurophysiologists rely increasingly on cell biological mechanisms and materials encoded in DNA to visualize and control the activity of neurons in functional circuits. Optical reporter proteins can broadcast the operational states of genetically designated cells and synapses; remote-controlled effectors can suppress or induce electrical activity. Many challenges, however, remain. These include the development of novel gene expression systems that target reporters and effectors to functionally relevant neuronal ensembles, the capacity to monitor and manipulate multiple populations of neurons in parallel, the ability to observe and elicit precisely timed action potentials, and the power to communicate with genetically designated target neurons through electromagnetic signals other than light.


Assuntos
Potenciais de Ação/genética , Sistema Nervoso Central/fisiologia , Biologia Molecular/métodos , Vias Neurais/fisiologia , Transmissão Sináptica/genética , Animais , Sistema Nervoso Central/citologia , Genes Reporter/genética , Humanos , Magnetismo , Biologia Molecular/tendências , Vias Neurais/citologia , Neurônios/fisiologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA