Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 24(14): 8031-8044, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32519822

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HCT) is an effective therapy for the treatment of high-risk haematological malignant disorders and other life-threatening haematological and genetic diseases. Acute graft-versus-host disease (aGvHD) remains the most frequent cause of non-relapse mortality following allo-HCT and limits its extensive clinical application. Current pharmacologic agents used for prophylaxis and treatment of aGvHD are not uniformly successful and have serious secondary side effects. Therefore, more effective and safe prophylaxis and therapy for aGvHD are an unmet clinical need. Defibrotide is a multi-target drug successfully employed for prophylaxis and treatment of veno-occlusive disease/sinusoidal obstruction syndrome. Recent preliminary clinical data have suggested some efficacy of defibrotide in the prevention of aGvHD after allo-HCT. Using a fully MHC-mismatched murine model of allo-HCT, we report here that defibrotide, either in prophylaxis or treatment, is effective in preventing T cell and neutrophil infiltration and aGvHD-associated tissue injury, thus reducing aGvHD incidence and severity, with significantly improved survival after allo-HCT. Moreover, we performed in vitro mechanistic studies using human cells revealing that defibrotide inhibits leucocyte-endothelial interactions by down-regulating expression of key endothelial adhesion molecules involved in leucocyte trafficking. Together, these findings provide evidence that defibrotide may represent an effective and safe clinical alternative for both prophylaxis and treatment of aGvHD after allo-HCT, paving the way for new therapeutic approaches.


Assuntos
Comunicação Celular/efeitos dos fármacos , Endotélio/metabolismo , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Leucócitos/metabolismo , Polidesoxirribonucleotídeos/farmacologia , Doença Aguda , Animais , Biomarcadores , Biópsia , Comunicação Celular/imunologia , Linhagem Celular , Quimiotaxia de Leucócito/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Endotélio/efeitos dos fármacos , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Camundongos , Doadores de Tecidos , Transplante Homólogo
2.
Neural Regen Res ; 14(11): 1851-1857, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31290434

RESUMO

Mesenchymal stromal cells are an excellent source of stem cells because they are isolated from adult tissues or perinatal derivatives, avoiding the ethical concerns that encumber embryonic stem cells. In preclinical models, it has been shown that mesenchymal stromal cells have neuroprotective and immunomodulatory properties, both of which are ideal for central nervous system treatment and repair. Here we will review the current literature on mesenchymal stromal cells, focusing on bone marrow mesenchymal stromal cells, adipose-derived mesenchymal stromal cells and mesenchymal stromal cells from the umbilical cord stroma, i.e., Wharton's jelly mesenchymal stromal cells. Finally, we will discuss the use of these cells to alleviate retinal ganglion cell degeneration following axonal trauma.

3.
Stem Cell Res Ther ; 10(1): 126, 2019 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31029166

RESUMO

BACKGROUND: The treatment of extensive and/or chronic skin wounds is a widespread and costly public health problem. Mesenchymal stem cells (MSCs) have been proposed as a potential cell therapy for inducing wound healing in different clinical settings, alone or in combination with biosynthetic scaffolds. Among them, silk fibroin (SF) seeded with MSCs has been shown to have increased efficacy in skin wound healing experimental models. METHODS: In this report, we investigated the wound healing effects of electrospun SF scaffolds cellularized with human Wharton's jelly MSCs (Wj-MSCs-SF) using a murine excisional wound splinting model. RESULTS: Immunohistopathological examination after transplant confirmed the presence of infiltrated human fibroblast-like CD90-positive cells in the dermis of the Wj-MSCs-SF-treated group, yielding neoangiogenesis, decreased inflammatory infiltrate and myofibroblast proliferation, less collagen matrix production, and complete epidermal regeneration. CONCLUSIONS: These findings indicate that Wj-MSCs transplanted in the wound bed on a silk fibroin scaffold contribute to the generation of a well-organized and vascularized granulation tissue, enhance reepithelization of the wound, and reduce the formation of fibrotic scar tissue, highlighting the potential therapeutic effects of Wj-MSC-based tissue engineering approaches to non-healing wound treatment.


Assuntos
Cicatriz/terapia , Fibroínas/farmacologia , Alicerces Teciduais , Geleia de Wharton/metabolismo , Animais , Cicatriz/patologia , Fibroblastos/metabolismo , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Reepitelização/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia , Engenharia Tecidual , Cicatrização/efeitos dos fármacos
4.
Sci Rep ; 8(1): 16299, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389962

RESUMO

Mesenchymal stem cell (MSC) transplantation is emerging as an ideal tool to restore the wounded central nervous system (CNS). MSCs isolated from extra-embryonic tissues have some advantages compared to MSCs derived from adult ones, such as an improved proliferative capacity, life span, differentiation potential and immunomodulatory properties. In addition, they are more immunoprivileged, reducing the probability of being rejected by the recipient. Umbilical cords (UCs) are a good source of MSCs because they are abundant, safe, non-invasively harvested after birth and, importantly, they are not encumbered with ethical problems. Here we show that the intravitreal transplant of Wharton´s jelly mesenchymal stem cells isolated from three different human UCs (hWJMSCs) delays axotomy-induced retinal ganglion cell (RGC) loss. In vivo, hWJMSCs secrete anti-inflammatory molecules and trophic factors, the latter alone may account for the elicited neuroprotection. Interestingly, this expression profile differs between naive and injured retinas, suggesting that the environment in which the hWJMSCs are modulates their secretome. Finally, even though the transplant itself is not toxic for RGCs, it is not innocuous as it triggers a transient but massive infiltration of Iba1+cells from the choroid to the retina that alters the retinal structure.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Degeneração Retiniana/terapia , Células Ganglionares da Retina/patologia , Geleia de Wharton/citologia , Animais , Anti-Inflamatórios/metabolismo , Axotomia/efeitos adversos , Modelos Animais de Doenças , Feminino , Humanos , Injeções Intravítreas , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/metabolismo , Ratos , Ratos Sprague-Dawley , Degeneração Retiniana/etiologia , Degeneração Retiniana/patologia , Resultado do Tratamento , Cordão Umbilical/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA