RESUMO
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
RESUMO
The use of nanoparticle surface chemistry to direct metal deposition has been well-studied in the modification of metal nanoparticle substrates but is not yet well-established for metal chalcogenide particle substrates, although integration of these particles into nanoheterostructures is of high interest. In this report, we investigate the effect of Cu2-xSe surface chemistry on the morphology of metal deposition on these plasmonic semiconductor nanoparticles. Specifically, we functionalize Cu2-xSe nanoparticles with a suite of 12 different ligands and investigate how different aspects of the ligand structure do or do not impact the morphology and extent of subsequent metal deposition on the Cu2-xSe surface. Surprisingly, our results indicate that the morphology of the resulting metal deposits and the extent of metal deposition onto the existing Cu2-xSe particle substrate are indistinguishable for the majority of ligands tested. An exception to these findings is observed for particles functionalized by quaternary alkylammonium bromides, which exhibit statistically distinct metal deposition patterns compared to all other ligands tested. We hypothesize that this unique behavior is due to a cooperative binding mechanism of the quaternary alkylammonium bromides to the surface of copper selenide. Taken together, these results yield both new strategies for controlling postsynthetic modification of copper selenide nanoparticles and also reveal limitations of surface chemistry-based approaches for this system.
RESUMO
Trace palladium in synthetic materials can be rapidly and inexpensively semiquantified by a catalysis-based fluorometric method that converts resorufin allyl ether to resorufin. However, whether sulfur compounds would interfere with this method has not been systematically studied. Herein, we show that although thiourea in solution interferes with quantification, sulfide, thiol, and thiocarbamate do not. The fluorometric method can also detect palladium bound to sulfur-based scavenger resin and outperform inductively coupled plasma mass spectrometry for detecting trace palladium in ibuprofen.
Assuntos
Fluorometria , Ibuprofeno , Paládio , Paládio/química , Ibuprofeno/química , Ibuprofeno/análise , Catálise , Fluorometria/métodos , Estrutura Molecular , Compostos de Enxofre/química , Compostos de Enxofre/análiseRESUMO
Heterogenous nanomaterials containing various inorganic phases have far-reaching impacts both from the physical phenomena they reveal and the technologies they enable. While the variety and impact of these materials has been demonstrated in many reports, there is critical ambiguity in the factors that lead to major bifurcations in developing these heterostructures, for example, the formation of either mixed metal semiconductors or segregated metal-semiconductor phases. Here, we compare outcomes of independently introducing 5 different metal cations (Au3+, Ag+, Hg2+, Pd2+, and Pt2+) to antifluorite copper selenide (Cu2-xSe) nanoparticles (diameter = 52 ± 5 nm). This suite of metal cations allowed us to control for and evaluate a variety of potentially competing intrinsic system parameters including metal cation size, valency, and reduction potential as well as lattice volume change, lattice formation energy, and lattice mismatch. Upon secondary metal addition, we determined that the transformation of a cubic Cu2-xSe lattice will occur via cation exchange reaction when the change in symmetry to the resulting metal selenide phase(s) preserves mutually orthogonal lattice vectors. However, if the new lattice symmetry would be disrupted further, metal deposition is the likely outcome of secondary metal cation addition, forming metal-semiconductor heterostructures. These results suggest a synthesis design rule that relies on an intrinsic property of the material, not the reaction pathway, and indicates that more such factors may be found in other particle and synthetic systems.
RESUMO
From size-dependent luminescence to localized surface plasmon resonances, the optical properties that emerge from common materials with nanoscale dimensions have been revolutionary. As nanomaterials get smaller, they approach molecular electronic structures, and this transition from bulk to molecular electronic properties is a subject of far-reaching impact. One class of nanomaterials that exhibit particularly interesting optoelectronic features at this size transition are coinage metal (i.e., group 11 elements copper, silver, and gold) nanoparticles with core diameters between approximately 1 to 3 nm (â¼25-200 atoms). Coinage metal nanoparticles can exhibit red or near-infrared photoluminescence features that are not seen in either their molecular or larger nanoscale counterparts. This emission has been exploited both as a probe of electronic behavior at the nanoscale as well as in critical applications such as biological imaging and chemical sensing. Interestingly, it has been demonstrated that their photoluminescence figures of merit such as emission quantum yield, energy, and lifetime are largely independent of particle diameter. Instead, emission from particles at this size range depends heavily on the particle surface chemistry, which includes both its metallic composition and the capping ligand architecture. The strong influence of surface chemistry on these emergent optoelectronic phenomena has powerful implications for both the study and use of these particles, primarily due to the theoretically limitless possible surface ligand architectures and metallic compositions. In this Account, we highlight recent work that studies and uses surface chemistry-mediated photoluminescence from coinage metal nanoparticles. Specifically, we emphasize the distinct, as well as synergistic, roles of the nanoparticle capping ligand and the nanoparticle core for controlling and/or enhancing their near-infrared photoluminescence. We then discuss the implications of surface chemistry-mediated photoluminescence as it relates to downstream applications such as energy transfer, sensing, and biological imaging. We conclude by discussing current challenges that remain in the field, including opportunities to develop new particle synthetic routes, analytical tools, and physical frameworks with which to understand small nanoparticle emission. Taken together, we anticipate that these materials will be foundational both in understanding the unique transition from molecular to bulk electronic structures and in the development of nanomaterials that leverage this transition.
RESUMO
The syntheses, properties, and broad utility of noble metal plasmonic nanomaterials are now well-established. To capitalize on this exceptional utility, mitigate its cost, and potentially expand it, non-noble metal plasmonic materials have become a topic of widespread interest. As new plasmonic materials come online, it is important to understand and assess their ability to generate comparable or complementary plasmonic properties to their noble metal counterparts, including as both sensing and photoredox materials. Here, we study plasmon-driven chemistry on degenerately doped copper selenide (Cu2- xSe) nanoparticles. In particular, we observe plasmon-driven dimerization of 4-nitrobenzenethiol to 4,4'-dimercaptoazobenzene on Cu2- xSe surfaces with yields comparable to those observed from noble metal nanoparticles. Overall, our results indicate that doped semiconductor nanoparticles are promising for light-driven chemistry technologies.
RESUMO
We introduce the concept of domain building blocks (DBBs) as an effective approach to increasing the diversity and complexity of metal-organic frameworks (MOFs). DBBs are defined as distinct structural or compositional regions within a MOF material. Using the DBB approach, we illustrate how an immense number of multivariate MOF materials can be prepared from a small collection of molecular building blocks comprising the distinct domains. The multivariate nature of the MOFs is determined by the sequence of DBBs within the MOF. We then apply this approach to the construction of a rich library of UiO-67 stratified MOF (sMOF) particles consisting of multiple concentric DBBs. We discuss and highlight the negative consequences of linker exchange reactions on the compositional integrity of DBBs in the UiO-67 sMOFs and propose and demonstrate mitigation strategies. We also demonstrate that individual strata can be specifically postsynthetically addressed and manipulated. Finally, we demonstrate the versatility of these synthetic strategies through the preparation of sMOF-nanoparticle composite materials.
RESUMO
We report the use of gold nanoparticle surface chemistry as a tool for site-selective noble metal deposition onto colloidal gold nanoparticle substrates. Specifically, we demonstrate that partial passivation of the gold nanoparticle surface using thiolated ligands can induce a transition from linear palladium island deposition to growth of palladium selectively at plasmonic hotspots on the edges or vertices of the underlying particle substrate. Further, we demonstrate the broader applicability of this approach with respect to substrate morphology (e.g., prismatic and rod-shaped nanoparticles), secondary metal (e.g., palladium, gold, and platinum), and surface ligand (e.g., surfactant molecules and n-alkanethiols). Taken together, these results demonstrate the important role of metal-ligand surface chemistry and ligand packing density on the resulting modes of multimetallic nanoparticle growth, and in particular, the ability to direct that growth to particle regions of impact such as plasmonic hotspots.
RESUMO
We use density functional theory to model the impact of a ligand shell on the magnetic properties of CoN (15 ≤ N ≤ 55) nanoclusters. We study three different ligand shells on each nanocluster core size, each known to have different electronic interactions with the surface: pure Cl ligand shells (X-type), pure PH3 ligand shells (L-type), and two component ligand shells with mixtures of Cl and PH3 ligands. The simulations show that the identity, arrangement, and total coverage of the ligand shell controls the distribution of local magnetic moments across the CoN core. On the surface of an unpassivated CoN nanocluster, the Co-Co coordination number (CN) is known to determine the local magnetic moments. Upon the introduction of a ligand, the Co-Co CN remains important, however the nature of the metal-ligand bond changes the extent to which increasing Co-Co CN quenches magnetism. Further, we identify an additional and significant long-range impact on local magnetic moments (LMM) from the PH3 ligand shells. Thus, we establish important design principles of magnetic nanoclusters, where ligand shell chemistry mediates the distribution of LMMs across a CoNLM nanocluster, allowing a route to rational design of specific magnetic properties.
RESUMO
Recently, a wide variety of new nanoparticle compositions have been identified as potential plasmonic materials including earth-abundant metals such as aluminum, highly doped semiconductors, as well as metal pnictides. For semiconductor compositions, plasmonic properties may be tuned not only by nanoparticle size and shape, but also by charge carrier density which can be controlled via a variety of intrinsic and extrinsic doping strategies. Current methods to quantitatively determine charge carrier density primarily rely on interpretation of the nanoparticle extinction spectrum. However, interpretation of nanoparticle extinction spectra can be convoluted by factors such as particle ligands, size distribution and/or aggregation state which may impact the charge carrier information extracted. Therefore, alternative methods to quantify charge carrier density may be transformational in the development of these new materials and would facilitate previously inaccessible correlations between particle synthetic routes, crystallographic features, and emergent optoelectronic properties. Here, we report the use of 77Se solid state nuclear magnetic resonance (NMR) spectroscopy to quantitatively determine charge carrier density in a variety of Cu2-xSe nanoparticle compositions and correlate this charge carrier density with particle crystallinity and extinction features. Importantly, we show that significant charge carrier populations are present even in nanoparticles without spectroscopically discernible plasmonic features and with crystal structures indistinguishable from fully reduced Cu2Se. These results highlight the potential impact of the NMR-based carrier density measurement, especially in the study of plasmon emergence in these systems (i.e., at low dopant concentrations).
RESUMO
Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 106 M-1 cm-1) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.
RESUMO
Amphiphilic triblock copolymers containing Fe(III) -catecholate complexes formulated as spherical- or cylindrical-shaped micellar nanoparticles (SMN and CMN, respectively) are described as new T1-weighted agents with high relaxivity, low cytotoxicity, and long-term stability in biological fluids. Relaxivities of both SMN and CMN exceed those of established gadolinium chelates across a wide range of magnetic field strengths. Interestingly, shape-dependent behavior is observed in terms of the particles' interactions with HeLa cells, with CMN exhibiting enhanced uptake and contrast via magnetic resonance imaging (MRI) compared with SMN. These results suggest that control over soft nanoparticle shape will provide an avenue for optimization of particle-based contrast agents as biodiagnostics. The polycatechol nanoparticles are proposed as suitable for preclinical investigations into their viability as gadolinium-free, safe, and effective imaging agents for MRI contrast enhancement.
Assuntos
Catecóis/química , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Polímeros/química , Células HeLa , Humanos , Fenômenos Magnéticos , Micelas , Nanopartículas/ultraestrutura , Espectroscopia de Prótons por Ressonância MagnéticaRESUMO
Here, we compare the ligand exchange behaviors of silver nanoparticles synthesized in the presence of two different surface capping agents: poly(vinylpyrrolidone) (MW = 10 or 40 kDa) or trisodium citrate, and under either ambient or low-oxygen conditions. In all cases, we find that the polymer capping agent exhibits features of a weakly bound ligand, producing better ligand exchange efficiencies with an incoming thiolated ligand compared to citrate. The polymer capping agent also generates nanoparticles that are more susceptible to reactions with oxygen during both synthesis and ligand exchange. The influence of the original ligand on the outcome of ligand exchange reactions with an incoming thiolated ligand highlights important aspects of silver nanoparticle surface chemistry, crucial for applications ranging from photocatalysis to antimicrobials.
RESUMO
Colloidal inorganic nanoparticles are being used in an increasingly large number of applications ranging from biological imaging to television displays. In all cases, nanoparticle surface chemistry can significantly impact particle physical properties, processing, and performance. The first step in leveraging this tunability is to develop analytical approaches to describe surface chemical features. Some of the most basic descriptors of particle surface chemistry include the quantity, identity, and arrangement of ligands appended to the particle core. Here, we review approaches to quantify molecular ligand densities on nanoparticle surfaces and consider fundamental barriers to the accuracy of this analysis including parameters such as dispersity in colloidal nanoparticle samples, particle-ligand interactions, and currently available analytical techniques. Techniques reviewed include widely studied methods such as optical, atomic, vibrational, and nuclear magnetic resonance spectroscopies as well as emerging or niche approaches including electrospray-differential mobility analysis, pH-based methods, and X-ray photoelectron spectroscopy. Collectively, these studies elucidate surface chemistry architectures that accelerate both fundamental understanding of nanoscale physical phenomena and the implementation of these materials in a wide range of technologies.
RESUMO
Energy transfer from plasmonic nanoparticles to semiconductors can expand the available spectrum of solar energy-harvesting devices. Here, we spatially and spectrally resolve the interaction between single Ag nanocubes with insulating and semiconducting substrates using electron energy-loss spectroscopy, electrodynamics simulations, and extended plasmon hybridization theory. Our results illustrate a new way to characterize plasmon-semiconductor energy transfer at the nanoscale and bear impact upon the design of next-generation solar energy-harvesting devices.
RESUMO
Small gold nanoparticles (â¼1.4-2.2 nm core diameters) exist at an exciting interface between molecular and metallic electronic structures. These particles have the potential to elucidate fundamental physical principles driving nanoscale phenomena and to be useful in a wide range of applications. Here, we study the optoelectronic properties of aqueous, phosphine-terminated gold nanoparticles (core diameter = 1.7 ± 0.4 nm) after ligand exchange with a variety of sulfur-containing molecules. No emission is observed from these particles prior to ligand exchange, however the introduction of sulfur-containing ligands initiates photoluminescence. Further, small changes in sulfur substituents produce significant changes in nanoparticle photoluminescence features including quantum yield, which ranges from 0.13 to 3.65% depending on substituent. Interestingly, smaller ligands produce the most intense, highest energy, narrowest, and longest-lived emissions. Radiative lifetime measurements for these gold nanoparticle conjugates range from 59 to 2590 µs, indicating that even minor changes to the ligand substituent fundamentally alter the electronic properties of the luminophore itself. These results isolate the critical role of surface chemistry in the photoluminescence of small metal nanoparticles and largely rule out other mechanisms such as discrete (Au(I)-S-R)n impurities, differences in ligand densities, and/or core diameters. Taken together, these experiments provide important mechanistic insight into the relationship between gold nanoparticle near-infrared emission and pendant ligand architectures, as well as demonstrate the pivotal role of metal nanoparticle surface chemistry in tuning and optimizing emergent optoelectronic features from these nanostructures.
RESUMO
We report the identification, description, and role of multinuclear metal-thiolate complexes in aqueous Au-Cu nanoparticle syntheses. The structure of these species was characterized by nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy techniques. The observed structures were found to be in good agreement with thermodynamic growth trends predicted by first-principles calculations. The presence of metal-thiolate complexes is then shown to be critical for the formation of alloyed Au-Cu architectures in the small nanoparticle regime (diameter â¼2 nm). In the absence of mixed metal-thiolate precursors, nanoparticles form with a Cu-S shell and a Au-rich interior. Taken together, these results demonstrate that prenucleation species, which are discrete molecular precursors distinct from both initial reagents and final particle products, may provide an important new synthetic route to control final metal nanoparticle composition and composition architectures.
RESUMO
We use nuclear magnetic resonance spectroscopy methods to quantify the extent of ligand exchange between different types of thiolated molecules on the surface of gold nanoparticles. Specifically, we determine ligand density values for single-moiety ligand shells and then use these data to describe ligand exchange behavior with a second, thiolated molecule. Using these techniques, we identify trends in gold nanoparticle functionalization efficiency with respect to ligand type, concentration, and reaction time as well as distinguish between functionalization pathways where the new ligand may either replace the existing ligand shell (exchange) or add to it ("backfilling"). Specifically, we find that gold nanoparticles functionalized with thiolated macromolecules, such as poly(ethylene glycol) (1 kDa), exhibit ligand exchange efficiencies ranging from 70% to 95% depending on the structure of the incoming ligand. Conversely, gold nanoparticles functionalized with small-molecule thiolated ligands exhibit exchange efficiencies as low as 2% when exposed to thiolated molecules under identical exchange conditions. Taken together, the reported results provide advances in the fundamental understanding of mixed ligand shell formation and will be important for the preparation of gold nanoparticles in a variety of biomedical, optoelectronic, and catalytic applications.
RESUMO
Nanoscale platinum materials are essential components in many technologies, including catalytic converters and fuel cells. Combining Pt with other metals can enhance its performance and/or decrease the cost of the technology, and a wide range of strategies have been developed to capitalize on these advantages. However, wet chemical synthesis of Pt-containing nanoparticles (NPs) is challenging due to the diverse metal segregation and metal-metal redox processes possible under closely related experimental conditions. Here, we elucidate the relationship between Pt(IV) speciation and the formation of well-known NP motifs, including frame-like and core-shell morphologies, in Au-Pt systems. We leverage insights gained from these studies to induce a controlled transition from redox- to surface chemistry-mediated growth pathways, resulting in the formation of Pt NPs in epitaxial contact and linear alignment along a gold nanoprism substrate. Mechanistic investigations using a combination of electron microscopy and (195)Pt NMR spectroscopy identify Pt(IV) speciation as a crucial parameter for understanding and controlling the formation of Pt-containing NPs. Combined, these findings point toward fully bottom-up methods for deposition and organization of NPs on colloidal plasmonic substrates.
RESUMO
In this paper we present in situ transmission electron microscopy of synthetic polymeric nanoparticles with emphasis on capturing motion in a solvated, aqueous state. The nanoparticles studied were obtained from the direct polymerization of a Pt(II)-containing monomer. The resulting structures provided sufficient contrast for facile imaging in situ. We contend that this technique will quickly become essential in the characterization of analogous systems, especially where dynamics are of interest in the solvated state. We describe the preparation of the synthetic micellar nanoparticles together with their characterization and motion in liquid water with comparison to conventional electron microscopy analyses.