Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186844

RESUMO

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Traço Falciforme , Animais , Humanos , Camundongos , Carcinoma de Células Renais/patologia , Hipóxia/genética , Hipóxia/metabolismo , Rim/metabolismo , Neoplasias Renais/patologia , Traço Falciforme/genética , Traço Falciforme/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo
2.
Nature ; 542(7641): 362-366, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28178232

RESUMO

Malignant neoplasms evolve in response to changes in oncogenic signalling. Cancer cell plasticity in response to evolutionary pressures is fundamental to tumour progression and the development of therapeutic resistance. Here we determine the molecular and cellular mechanisms of cancer cell plasticity in a conditional oncogenic Kras mouse model of pancreatic ductal adenocarcinoma (PDAC), a malignancy that displays considerable phenotypic diversity and morphological heterogeneity. In this model, stochastic extinction of oncogenic Kras signalling and emergence of Kras-independent escaper populations (cells that acquire oncogenic properties) are associated with de-differentiation and aggressive biological behaviour. Transcriptomic and functional analyses of Kras-independent escapers reveal the presence of Smarcb1-Myc-network-driven mesenchymal reprogramming and independence from MAPK signalling. A somatic mosaic model of PDAC, which allows time-restricted perturbation of cell fate, shows that depletion of Smarcb1 activates the Myc network, driving an anabolic switch that increases protein metabolism and adaptive activation of endoplasmic-reticulum-stress-induced survival pathways. Increased protein turnover renders mesenchymal sub-populations highly susceptible to pharmacological and genetic perturbation of the cellular proteostatic machinery and the IRE1-α-MKK4 arm of the endoplasmic-reticulum-stress-response pathway. Specifically, combination regimens that impair the unfolded protein responses block the emergence of aggressive mesenchymal subpopulations in mouse and patient-derived PDAC models. These molecular and biological insights inform a potential therapeutic strategy for targeting aggressive mesenchymal features of PDAC.


Assuntos
Mesoderma/patologia , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Estresse do Retículo Endoplasmático/genética , Feminino , Genes myc , Genes ras , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Mesoderma/metabolismo , Camundongos , Mosaicismo , Proteína Oncogênica p55(v-myc)/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína SMARCB1/deficiência , Proteína SMARCB1/metabolismo , Transcriptoma/genética , Gencitabina
3.
Gastroenterology ; 161(1): 196-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745946

RESUMO

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Biomarcadores Tumorais/genética , Neoplasias Colorretais/tratamento farmacológico , Carioferinas/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/administração & dosagem , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Bases de Dados Genéticas , Células HCT116 , Células HT29 , Humanos , Indóis/administração & dosagem , Carioferinas/metabolismo , Camundongos , Morfolinas/administração & dosagem , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Pirimidinas/administração & dosagem , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1
4.
J Immunol ; 192(10): 4921-31, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24729612

RESUMO

Vascular endothelial cells (ECs) and several cancer cells express B7h, which is the ligand of the ICOS T cell costimulatory molecule. We have previously shown that B7h triggering via a soluble form of ICOS (ICOS-Fc) inhibits the adhesion of polymorphonuclear and tumor cell lines to HUVECs; thus, we suggested that ICOS-Fc may act as an anti-inflammatory and antitumor agent. Because cancer cell migration and angiogenesis are crucial for metastasis dissemination, the aim of this work was to evaluate the effect of ICOS-Fc on the migration of cancer cells and ECs. ICOS-Fc specifically inhibited the migration of HUVECs, human dermal lymphatic ECs, and the HT29, HCT116, PC-3, HepG2, JR8, and M14 tumor cell lines expressing high levels of B7h, whereas it was ineffective in the RPMI7932, PCF-2, LM, and BHT-101 cell lines expressing low levels of B7h. Furthermore, ICOS-Fc downmodulated hepatocyte growth factor facilitated the epithelial-to-mesenchymal transition in HepG2 cells. Moreover, ICOS-Fc downmodulated the phosphorylation of focal adhesion kinase and the expression of ß-Pix in both HUVECs and tumor cell lines. Finally, treatment with ICOS-Fc inhibited the development of lung metastases upon injection of NOD-SCID-IL2Rγnull mice with CF-PAC1 cells, as well as C57BL/6 mice with B16-F10 cells. Therefore, the B7h-ICOS interaction may modulate the spread of cancer metastases, which suggests the novel use of ICOS-Fc as an immunomodulatory drug. However, in the B16-F10-metastasized lungs, ICOS-Fc also increased IL-17A/RORc and decreased IL-10/Foxp3 expression, which indicates that it also exerts positive effects on the antitumor immune response.


Assuntos
Movimento Celular/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/imunologia , Neoplasias Pulmonares/imunologia , Animais , Células Hep G2 , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Transplante de Neoplasias , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia
5.
J Immunol ; 190(3): 1125-34, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275603

RESUMO

B7h, expressed by several cell types, binds ICOS expressed by activated T cells. We have previously shown that B7h triggering by ICOS-Fc inhibits human endothelial cell adhesiveness. This work investigated the effect of ICOS-Fc on human monocyte-derived dendritic cells (DCs). We found that DCs matured with LPS in the presence of ICOS-Fc (mDCs(ICOS)) produced greater amounts of IL-23 and IL-10, and promoted a higher secretion of IL-17A and IL-17F in MLCs than did those DCs matured with LPS alone (mDCs). Moreover, mDCs(ICOS) pulsed with the keyhole limpet hemocyanin Ag during the maturation phase were better stimulators of Ag-specific MHC class I-, but not class II-restricted T cells than mDCs. This was probably due to promotion of cross-presentation because it was not detected when the Flu-MA(58-66) Ag was directly loaded on already matured DCs and mDCs(ICOS). Finally, ICOS-Fc inhibited the adhesion of both immature DCs and mDCs to vascular and lymphoid endothelial cells, their migratory activity, and the expression of the Rac-1 activator ß-Pix involved in cell motility. These data suggest that B7h stimulation modulates DC function with effects on their maturation and recruitment into tissues. This opens a novel view on the use of interactors of the ICOS:B7h system as immunomodulatory drugs.


Assuntos
Células Dendríticas/efeitos dos fármacos , Ligante Coestimulador de Linfócitos T Induzíveis/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas/citologia , Células Cultivadas/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Antígeno HLA-A2/imunologia , Hemocianinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Teste de Cultura Mista de Linfócitos , Monócitos/citologia , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais/efeitos dos fármacos
6.
Nat Cancer ; 4(7): 984-1000, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365326

RESUMO

Molecular routes to metastatic dissemination are critical determinants of aggressive cancers. Through in vivo CRISPR-Cas9 genome editing, we generated somatic mosaic genetically engineered models that faithfully recapitulate metastatic renal tumors. Disruption of 9p21 locus is an evolutionary driver to systemic disease through the rapid acquisition of complex karyotypes in cancer cells. Cross-species analysis revealed that recurrent patterns of copy number variations, including 21q loss and dysregulation of the interferon pathway, are major drivers of metastatic potential. In vitro and in vivo genomic engineering, leveraging loss-of-function studies, along with a model of partial trisomy of chromosome 21q, demonstrated a dosage-dependent effect of the interferon receptor genes cluster as an adaptive mechanism to deleterious chromosomal instability in metastatic progression. This work provides critical knowledge on drivers of renal cell carcinoma progression and defines the primary role of interferon signaling in constraining the propagation of aneuploid clones in cancer evolution.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Variações do Número de Cópias de DNA/genética , Instabilidade Cromossômica/genética , Aneuploidia , Neoplasias Renais/genética
7.
J Immunol ; 185(7): 3970-9, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20817864

RESUMO

Vascular endothelial cells (ECs) are key players in leukocyte recruitment into tissues and metastatic dissemination of tumor cells. ECs express B7h, which is the ligand of the ICOS T cell costimulatory molecule. The aim of this work was to assess the effect of B7h triggering by a soluble form of ICOS (ICOS-Fc) on the adhesion of colon carcinoma cell lines to HUVECs. We found that B7h triggering inhibited HUVEC adhesiveness to HT29 and DLD1 cells (by 50 and 35%, respectively) but not to HCT116 cells. The effect was dependent on the ICOS-Fc dose and was detectable as early as 30 min after treatment and was still present after 24 h. It was inhibited by soluble anti-ICOS reagents (mAb and B7h-Fc) and silencing of B7h on HUVECs, and it was not displayed by an F119S mutated form of ICOS-Fc that does not bind B7h. HUVEC treatment with ICOS-Fc did not modulate expression of adhesion molecules and cytokines, but it substantially downmodulated ERK phosphorylation induced by E-selectin triggering or osteopontin, which may influence HUVEC adhesiveness. Moreover, HUVEC treatment with ICOS-Fc also inhibited adhesion of polymorphonuclear cells and several tumor cell lines from different origins. Therefore, the B7h-ICOS interaction may modulate spreading of cancer metastases and recruitment of polymorphonuclear cells in inflammatory sites, which opens a view on the use of ICOS-Fc as an immunomodulatory drug.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Neutrófilos/metabolismo , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígeno B7-H1 , Western Blotting , Moléculas de Adesão Celular/imunologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/imunologia , Humanos , Proteína Coestimuladora de Linfócitos T Induzíveis , Neutrófilos/imunologia , Transdução de Sinais/fisiologia , Cordão Umbilical/metabolismo
8.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34309585

RESUMO

Lack of sustained response to therapeutic agents in patients with KRAS-mutant lung cancer poses a major challenge and arises partly due to intratumor heterogeneity that defines phenotypically distinct tumor subpopulations. To attain better therapeutic outcomes, it is important to understand the differential therapeutic sensitivities of tumor cell subsets. Epithelial-mesenchymal transition is a biological phenomenon that can alter the state of cells along a phenotypic spectrum and cause transcriptional rewiring to produce distinct tumor cell subpopulations. We utilized functional shRNA screens, in in vitro and in vivo models, to identify and validate an increased dependence of mesenchymal tumor cells on cyclin-dependent kinase 4 (CDK4) for survival, as well as a mechanism of resistance to MEK inhibitors. High zinc finger E-box binding homeobox 1 levels in mesenchymal tumor cells repressed p21, leading to perturbed CDK4 pathway activity. Increased dependence on CDK4 rendered mesenchymal cancer cells particularly vulnerable to selective CDK4 inhibitors. Coadministration of CDK4 and MEK inhibitors in heterogeneous tumors effectively targeted different tumor subpopulations, subverting the resistance to either single-agent treatment.


Assuntos
Quinase 4 Dependente de Ciclina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Mutação , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/metabolismo , DNA de Neoplasias/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Neoplasias Experimentais , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
9.
Cancers (Basel) ; 13(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34359705

RESUMO

Colorectal cancer (CRC) is a heterogeneous disease showing significant variability in clinical aggressiveness. Primary and acquired resistance limits the efficacy of available treatments, and identification of effective drug combinations is needed to further improve patients' outcomes. We previously found that the NEDD8-activating enzyme inhibitor pevonedistat induced tumor stabilization in preclinical models of poorly differentiated, clinically aggressive CRC resistant to available therapies. To identify drugs that can be effectively combined with pevonedistat, we performed a "drop-out" loss-of-function synthetic lethality screening with an shRNA library covering 200 drug-target genes in four different CRC cell lines. Multiple screening hits were found to be involved in the EGFR signaling pathway, suggesting that, rather than inhibition of a specific gene, interference with the EGFR pathway at any level could be effectively leveraged for combination therapies based on pevonedistat. Exploiting both BRAF-mutant and RAS/RAF wild-type CRC models, we validated the therapeutic relevance of our findings by showing that combined blockade of NEDD8 and EGFR pathways led to increased growth arrest and apoptosis both in vitro and in vivo. Pathway modulation analysis showed that compensatory feedback loops induced by single treatments were blunted by the combinations. These results unveil possible therapeutic opportunities in specific CRC clinical settings.

10.
J Cell Mol Med ; 14(6A): 1347-57, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19912441

RESUMO

In human cells the length of telomeres depends on telomerase activity. This activity and the expression of the catalytic subunit of human telomerase reverse transcriptase (hTERT) is strongly up-regulated in most human cancers. hTERT expression is regulated by different transcription factors, such as c-Myc, Mad1 and Sp1. In this study, we demonstrated that 15d-PG J2 and rosiglitazone (an endogenous and synthetic peroxisome proliferators activated receptor gamma (PPARgamma) ligand, respectively) inhibited hTERT expression and telomerase activity in CaCo-2 colon cancer cells. Moreover, both ligands inhibited c-Myc protein expression and its E-box DNA binding activity. Additionally, Mad1 protein expression and its E-box DNA binding activity were strongly increased by 15d-PG J2 and, to a lesser extent, by rosiglitazone. Sp1 transcription factor expression and its GC-box DNA binding activity were not affected by both PPARgamma ligands. Results obtained by transient transfection of CaCo-2 cells with pmaxFP-Green-PRL plasmid constructs containing the functional hTERT core promoter (including one E-box and five GC-boxes) and its E-box deleted sequences, cloned upstream of the green fluorescent protein reporter gene, demonstrated that 15d-PG J2, and with minor effectiveness, rosiglitazone, strongly reduced hTERT core promoter activity. E-boxes for Myc/Mad/Max binding showed a higher activity than GC-boxes for Sp1. By using GW9662, an antagonist of PPARgamma, we demonstrated that the effects of 15d-PG J2 are completely PPARgamma independent, whereas the effects of rosiglitazone on hTERT expression seem to be partially PPARgamma independent. The regulation of hTERT expression by 15d-PG J2 and rosiglitazone, through the modulation of the Myc/Max/Mad1 network, may represent a new mechanism of action of these substances in inhibiting cell proliferation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias do Colo/metabolismo , Prostaglandina D2/análogos & derivados , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Telomerase/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Western Blotting , Células CACO-2 , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , DNA de Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , PPAR gama/metabolismo , Regiões Promotoras Genéticas/genética , Prostaglandina D2/farmacologia , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rosiglitazona , Telomerase/genética , Telomerase/metabolismo
11.
Biochem J ; 422(2): 285-94, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19508232

RESUMO

HNE (4-hydroxynonenal), the major product of lipoperoxidation, easily reacts with proteins through adduct formation between its three main functional groups and lysyl, histidyl and cysteinyl residues of proteins. HNE is considered to be an ultimate mediator of toxic effects elicited by oxidative stress. It can be detected in several patho-physiological conditions, in which it affects cellular processes by addition to functional proteins. We demonstrated in the present study, by MS and confirmed by immunoblotting experiments, the formation of HNE-alpha-enolase adduct(s) in HL-60 human leukaemic cells. Alpha-enolase is a multifunctional protein that acts as a glycolytic enzyme, transcription factor [MBP-1 (c-myc binding protein-1)] and plasminogen receptor. HNE did not affect alpha-enolase enzymatic activity, expression or intracellular localization, and did not change the expression and localization of MBP-1 either. Confocal and electronic microscopy results confirmed the plasma membrane, cytosolic and nuclear localization of alpha-enolase in HL-60 cells and demonstrated that HNE was colocalized with alpha-enolase at the surface of cells early after its addition. HNE caused a dose- and time-dependent reduction of the binding of plasminogen to alpha-enolase. As a consequence, HNE reduced adhesion of HL-60 cells to HUVECs (human umbilical vein endothelial cells). These results could suggest a new role for HNE in the control of tumour growth and invasion.


Assuntos
Aldeídos/administração & dosagem , Adutos de DNA/metabolismo , Fosfopiruvato Hidratase/metabolismo , Plasminogênio/metabolismo , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células HL-60 , Humanos
12.
Cancers (Basel) ; 11(4)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30986992

RESUMO

The implementation of cancer immunotherapeutics for solid tumors including lung cancers has improved clinical outcomes in a small percentage of patients. However, the majority of patients show little to no response or acquire resistance during treatment with checkpoint inhibitors delivered as a monotherapy. Therefore, identifying resistance mechanisms and novel combination therapy approaches is imperative to improve responses to immune checkpoint inhibitors. To address this, we performed an in vivo shRNA dropout screen that focused on genes encoding for FDA-approved drug targets (FDAome). We implanted epithelial and mesenchymal Kras/p53 (KP) mutant murine lung cancer cells expressing the FDAome shRNA library into syngeneic mice treated with an anti-PD-1 antibody. Sequencing for the barcoded shRNAs revealed Ntrk1 was significantly depleted from mesenchymal tumors challenged with PD-1 blockade, suggesting it provides a survival advantage to tumor cells when under immune system pressure. Our data confirmed Ntrk1 transcript levels are upregulated in tumors treated with PD-1 inhibitors. Additionally, analysis of tumor-infiltrating T cell populations revealed that Ntrk1 can promote CD8+ T cell exhaustion. Lastly, we found that Ntrk1 regulates Jak/Stat signaling to promote expression of PD-L1 on tumor cells. Together, these data suggest that Ntrk1 activates Jak/Stat signaling to regulate expression of immunosuppressive molecules including PD-L1, promoting exhaustion within the tumor microenvironment.

13.
Sci Transl Med ; 11(483)2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867319

RESUMO

Mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitors have failed to show clinical benefit in Kirsten rat sarcoma (KRAS) mutant lung cancer due to various resistance mechanisms. To identify differential therapeutic sensitivities between epithelial and mesenchymal lung tumors, we performed in vivo small hairpin RNA screens, proteomic profiling, and analysis of patient tumor datasets, which revealed an inverse correlation between mitogen-activated protein kinase (MAPK) signaling dependency and a zinc finger E-box binding homeobox 1 (ZEB1)-regulated epithelial-to-mesenchymal transition. Mechanistic studies determined that MAPK signaling dependency in epithelial lung cancer cells is due to the scaffold protein interleukin-17 receptor D (IL17RD), which is directly repressed by ZEB1. Lung tumors in multiple Kras mutant murine models with increased ZEB1 displayed low IL17RD expression, accompanied by MAPK-independent tumor growth and therapeutic resistance to MEK inhibition. Suppression of ZEB1 function with miR-200 expression or the histone deacetylase inhibitor mocetinostat sensitized resistant cancer cells to MEK inhibition and markedly reduced in vivo tumor growth, showing a promising combinatorial treatment strategy for KRAS mutant cancers. In human lung tumor samples, high ZEB1 and low IL17RD expression correlated with low MAPK signaling, presenting potential markers that predict patient response to MEK inhibitors.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética , Neoplasias/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Interleucina-17/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Células Epiteliais/patologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases , Mesoderma/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
14.
Nat Commun ; 10(1): 5125, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719531

RESUMO

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, due in part to the propensity of lung cancer to metastasize. Aberrant epithelial-to-mesenchymal transition (EMT) is a proposed model for the initiation of metastasis. During EMT cell-cell adhesion is reduced allowing cells to dissociate and invade. Of the EMT-associated transcription factors, ZEB1 uniquely promotes NSCLC disease progression. Here we apply two independent screens, BioID and an Epigenome shRNA dropout screen, to define ZEB1 interactors that are critical to metastatic NSCLC. We identify the NuRD complex as a ZEB1 co-repressor and the Rab22 GTPase-activating protein TBC1D2b as a ZEB1/NuRD complex target. We find that TBC1D2b suppresses E-cadherin internalization, thus hindering cancer cell invasion and metastasis.


Assuntos
Caderinas/metabolismo , Endocitose , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proteínas Correpressoras/metabolismo , Humanos , Camundongos , Modelos Biológicos , Metástase Neoplásica , Ligação Proteica , Proteínas rab de Ligação ao GTP/metabolismo
15.
Cancer Res ; 79(21): 5612-5625, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492820

RESUMO

Mutated KRAS protein is a pivotal tumor driver in pancreatic cancer. However, despite comprehensive efforts, effective therapeutics that can target oncogenic KRAS are still under investigation or awaiting clinical approval. Using a specific KRAS-dependent gene signature, we implemented a computer-assisted inspection of a drug-gene network to in silico repurpose drugs that work like inhibitors of oncogenic KRAS. We identified and validated decitabine, an FDA-approved drug, as a potent inhibitor of growth in pancreatic cancer cells and patient-derived xenograft models that showed KRAS dependency. Mechanistically, decitabine efficacy was linked to KRAS-driven dependency on nucleotide metabolism and its ability to specifically impair pyrimidine biosynthesis in KRAS-dependent tumors cells. These findings also showed that gene signatures related to KRAS dependency might be prospectively used to inform on decitabine sensitivity in a selected subset of patients with KRAS-mutated pancreatic cancer. Overall, the repurposing of decitabine emerged as an intriguing option for treating pancreatic tumors that are addicted to mutant KRAS, thus offering opportunities for improving the arsenal of therapeutics for this extremely deadly disease. SIGNIFICANCE: Decitabine is a promising drug for cancer cells dependent on RAS signaling.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Decitabina/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma/metabolismo , Animais , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Reposicionamento de Medicamentos/métodos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/efeitos dos fármacos , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
Cancer Cell ; 35(2): 204-220.e9, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30753823

RESUMO

Alterations in chromatin remodeling genes have been increasingly implicated in human oncogenesis. Specifically, the biallelic inactivation of the SWI/SNF subunit SMARCB1 results in the emergence of extremely aggressive pediatric malignancies. Here, we developed embryonic mosaic mouse models of malignant rhabdoid tumors (MRTs) that faithfully recapitulate the clinical-pathological features of the human disease. We demonstrated that SMARCB1-deficient malignancies exhibit dramatic activation of the unfolded protein response (UPR) and ER stress response via a genetically intact MYC-p19ARF-p53 axis. As a consequence, these tumors display an exquisite sensitivity to agents inducing proteotoxic stress and inhibition of the autophagic machinery. In conclusion, our findings provide a rationale for drug repositioning trials investigating combinations of agents targeting the UPR and autophagy in SMARCB1-deficient MRTs.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Proteostase , Tumor Rabdoide/metabolismo , Proteína SMARCB1/deficiência , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidores de Proteassoma/farmacologia , Proteostase/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Tumor Rabdoide/tratamento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Transdução de Sinais , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Resposta a Proteínas não Dobradas
17.
J Biomed Nanotechnol ; 12(1): 114-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27301177

RESUMO

Camptothecin (CPT), a pentacyclic alkaloid, is an inhibitor of DNA Topoisomerase-I and shows a wide spectrum of anti-cancer activities. The use of CPT has been hampered by poor aqueous solubility and a high degradation rate. Previously, it has been reported that CPT encapsulated in ß-cyclodextrin-nanosponges (CN-CPT) overcomes these disadvantages and improves the CPT's inhibitory effect on DU145 prostate tumor cell lines, and PC-3 growth in vitro. This work extends these observations by showing that CN-CPT significantly inhibits the adhesion and migration of these tumor cells and their STAT3 phosphorylation. The anti-adhesive effect is exerted also in human endothelial cells, in which CN-CPT also inhibits the angiogenic activity as assessed by the tubulogenesis and sprouting assays. Finally, CN-CPT substantially delays the growth of PC-3 cell engraftment in SCID mice in vivo without apparent toxic effects. These results support the use of ß-cyclodextrin nanosponge nanotechnology as a potential nanocarrier for delivery of anticancer drugs in the treatment of prostate cancers.


Assuntos
Camptotecina/administração & dosagem , Nanocápsulas/química , Neoplasias da Próstata/química , Neoplasias da Próstata/tratamento farmacológico , beta-Ciclodextrinas/química , Absorção Fisico-Química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Camptotecina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difusão , Humanos , Masculino , Camundongos , Camundongos SCID , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Porosidade , Neoplasias da Próstata/patologia
18.
Nat Commun ; 7: 10500, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26806015

RESUMO

As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC). This approach reveals oncogenic activity for rare gene aberrations in genes including NAD Kinase (NADK), which regulates NADP(H) homeostasis and cellular redox state. We further validate mutant NADK, whose expression provides gain-of-function enzymatic activity leading to a reduction in cellular reactive oxygen species and tumorigenesis, and show that depletion of wild-type NADK in PDAC cell lines attenuates cancer cell growth in vitro and in vivo. These data indicate that annotating rare aberrations can reveal important cancer signalling pathways representing additional therapeutic targets.


Assuntos
Neoplasias Pancreáticas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Carcinogênese , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Mutação , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pancreáticas
19.
J Biomed Nanotechnol ; 11(12): 2169-85, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26510311

RESUMO

4-hydroxynonenal (HNE), a lipid peroxidation product, is a promising anti-neoplastic drug due to its remarkable anti-cancer activities. However, this possibility has not been explored, because the delivery of HNE is very challenging as a result of its low solubility and its poor stability. This study intentionally designed a new type of lipid nanocapsules specifically for HNE delivery. They consist of a medium chain triglyceride liquid oil core surrounded by a polymer shell. A ß-cyclodextrin-poly(4-acryloylmorpholine) conjugate was selected as the shell component. HNE-loaded nanocapsules were about 350 nm in size with a negative surface charge. They were stable for two years when stored in suspensions at 4 degrees C. In vitro experiments showed that HNE was released from the nanocapsules at a considerable rate. Nanocapsule uptake into cells was evaluated using a fluorescent formulation that revealed rapid internalisation. Cytotoxicity studies demonstrated the safety of the formulation. Enhanced anti-tumoral activity against various cell lines, depending on increased HNE stability, was obtained by using HNE-loaded nanocapsules. In particular, we have demonstrated an increase in anti-proliferative, pro-apoptotic and differentiative activity in several tumour cell lines from different tissues. Moreover, we evaluated the effects of these new nanocapsules on a three-dimensional human reconstructed model of skin melanoma. Interestingly, the encouraging results obtained with topical administration on the epidermal surface could open new perspectives in melanoma treatments.


Assuntos
Aldeídos/química , Aldeídos/farmacologia , Portadores de Fármacos/química , Lipídeos/química , Melanoma/patologia , Nanocápsulas/química , Acrilamidas/química , Transporte Biológico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclodextrinas/química , Estabilidade de Medicamentos , Humanos , Morfolinas/química
20.
Cancer Res ; 75(6): 1091-101, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25736685

RESUMO

Mutated KRAS (KRAS*) is a fundamental driver in the majority of pancreatic ductal adenocarcinomas (PDAC). Using an inducible mouse model of KRAS*-driven PDAC, we compared KRAS* genetic extinction with pharmacologic inhibition of MEK1 in tumor spheres and in vivo. KRAS* ablation blocked proliferation and induced apoptosis, whereas MEK1 inhibition exerted cytostatic effects. Proteomic analysis evidenced that MEK1 inhibition was accompanied by a sustained activation of the PI3K-AKT-MTOR pathway and by the activation of AXL, PDGFRa, and HER1-2 receptor tyrosine kinases (RTK) expressed in a large proportion of human PDAC samples analyzed. Although single inhibition of each RTK alone or plus MEK1 inhibitors was ineffective, a combination of inhibitors targeting all three coactivated RTKs and MEK1 was needed to inhibit proliferation and induce apoptosis in both mouse and human low-passage PDAC cultures. Importantly, constitutive AKT activation, which may mimic the fraction of AKT2-amplified PDAC, was able to bypass the induction of apoptosis caused by KRAS* ablation, highlighting a potential inherent resistance mechanism that may inform the clinical application of MEK inhibitor therapy. This study suggests that combinatorial-targeted therapies for pancreatic cancer must be informed by the activation state of each putative driver in a given treatment context. In addition, our work may offer explanative and predictive power in understanding why inhibitors of EGFR signaling fail in PDAC treatment and how drug resistance mechanisms may arise in strategies to directly target KRAS.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA