Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 362(1-2): 15-23, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22012614

RESUMO

Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin naturally found in grapes and red wine, is a redox-active compound endowed with significant positive activities. In this study, the effects of resveratrol on intracellular free Ca(2+) concentration ([Ca(2+)](c)) and on cell viability in tumoral AR42J pancreatic cells are examined. The results show that resveratrol (100 µM and 1 mM) induced changes in [Ca(2+)](c), that consisted of single or short lasting spikes followed by a slow reduction toward a value close to the resting level. Lower concentrations of resveratrol (1 and 10 µM) did not show detectable effects on [Ca(2+)](c). Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nM CCK-8, 20 pM CCK-8 or 1 µM thapsigargin, blocked Ca(2+) responses evoked by resveratrol. Conversely, prior stimulation of cells with resveratrol inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or thapsigargin. In addition, resveratrol inhibited oscillations in [Ca(2+)](c) evoked by a physiological concentration of CCK-8 (20 pM). On the other hand, incubation of cells in the presence of resveratrol induced a reduction of cell viability. Finally, incubation of AR42J cells in the presence of resveratrol led to activation of c-Jun N-terminal kinase (JNK), a mitogen-activated protein kinase responsive to stress stimuli. Activation of JNK was reduced in the absence of extracellular Ca(2+). In summary, the results show that resveratrol releases Ca(2+) from intracellular stores, most probably from the endoplasmic reticulum, and reduces AR42J cells viability. Reorganization of cell's survival/death processes in the presence of resveratrol may involve Ca(2+)-mediated JNK activation.


Assuntos
Cálcio/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Estilbenos/farmacologia , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ratos , Resveratrol , Sincalida/farmacologia , Tapsigargina/farmacologia
2.
J Pineal Res ; 50(3): 250-60, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21118301

RESUMO

Melatonin reduces proliferation in many different cancer cell lines. Thus, melatonin is considered a promising antitumor agent, promoting apoptosis in tumor cells while preserving viability of normal cells. Herein, we examined the effects of melatonin on the pancreatic AR42J tumor cell line. We have analyzed cytosolic-free Ca(2+) concentration ([Ca(2+) ](c) ), mitochondrial-free Ca(2+) concentration ([Ca(2+) ](m) ), mitochondrial membrane potential (Ψm), mitochondrial flavin adenine dinucleotide (FAD) oxidative state, cellular viability and caspase-3 activity. Our results show that melatonin induced transient changes in [Ca(2+) ](c) and [Ca(2+) ](m) . Melatonin also induced depolarization of Ψm and led to a reduction in the level of oxidized FAD. In addition, melatonin reduced AR42J cell viability. Finally, we found a Ca(2+) -dependent caspase-3 activation in response to melatonin. Collectively, these data support the likelihood that melatonin reduces viability of tumor AR42J cells via its action on mitochondrial activity and caspase-3 activation.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Melatonina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos
3.
J Pineal Res ; 51(2): 172-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21486367

RESUMO

Lipid peroxidation (LPO) has been claimed as a major factor involved in stallion damage during storage or cryopreservation. Because melatonin is a well-known potent antioxidant, the aim of the present study was to investigate the effect of melatonin during in vitro incubation. Furthermore, we investigated the presence of specific melatonin receptors (MT1 and MT2) using specific polyclonal antibodies and western blotting. Stallion spermatozoa were incubated up to 3 hr at 37°C in the presence of different concentrations of melatonin (0, 50 pm, 100 pm, 200 pm, or 1 µm). At the beginning and at the end of the incubation period, sperm motility (using computer-assisted sperm analysis), membrane integrity and permeability, fluidity of the sperm membrane, LPO, and mitochondrial membrane potential (Δψm) were flow cytometrically evaluated. Melatonin reduced changes in the spermatozoa related to apoptosis (increased sperm membrane permeability and lowered Δψm) (P < 0.05). Furthermore, LPO was dramatically reduced (P < 0.01) while no effect was observed on sperm motility or kinematics. Interestingly, melatonin helped maintain a more fluid sperm plasmalemma (P < 0.05). Our results clearly show the absence of MT1 and MT2 receptors in the stallion spermatozoa. It is concluded that melatonin is a useful tool to improve the quality of stored stallion sperm, increasing their life span and reducing premature aging, this likely relates to melatonin's antioxidant properties.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Melatonina/farmacologia , Espermatozoides/metabolismo , Animais , Membrana Celular/metabolismo , Senescência Celular/efeitos dos fármacos , Cavalos , Masculino , Fluidez de Membrana/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Receptores de Melatonina/metabolismo , Preservação do Sêmen , Espermatozoides/citologia
4.
PLoS One ; 7(5): e37713, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662198

RESUMO

The role of cAMP in spermatic functions was classically thought to be mediated exclusively through the activation of Protein Kinase A (PKA). However, it has recently been shown that cAMP also exerts its effects through a PKA-independent pathway activating a family of proteins known as Epac proteins. Therefore, many of the spermatic functions thought to be regulated by cAMP through the activation of PKA are again under study. We aimed to identify and to investigate the role of Epac proteins in spermatozoa using a specific permeable analog (8-Br-2'-O-Me-cAMP). Also, we aimed to study its relationship with E-cadherin, an adhesion protein involved in fertility. Our results demonstrate the presence and sub-cellular distribution of Epac 1 and Epac 2 in mammalian spermatozoa. Capacitation and the acrosome reaction induced a change in the localization of Epac proteins in sperm. Moreover, incubation with 8-Br-2'-O-Me-cAMP prompted an increase in Rap1 activation, in the scrambling of plasma membrane phospholipids (necessary for the capacitation process), the acrosome reaction, motility, and calcium mobilization, when spermatozoa were incubated in acrosome reaction conditions. Finally, the activation of Epac proteins induced a change in the distribution of E-cadherin. Therefore, the increase in the acrosome reaction, together with the increase in calcium (which is known to be essential for fertilization) and the Epac nteraction with E-cadherin, might indicate that Epac proteins have an important role in gamete recognition and fertilization.


Assuntos
AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Espermatozoides/metabolismo , Acrossomo/fisiologia , Adulto , Animais , Caderinas/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Humanos , Espaço Intracelular/metabolismo , Masculino , Fosfolipídeos/metabolismo , Transporte Proteico , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides , Sus scrofa , Adulto Jovem , Proteínas rap1 de Ligação ao GTP/metabolismo
5.
PLoS One ; 7(1): e30688, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22292020

RESUMO

Apoptosis has been recognized as a cause of sperm death during cryopreservation and a cause of infertility in humans, however there is no data on its role in sperm death during conservation in refrigeration; autophagy has not been described to date in mature sperm. We investigated the role of apoptosis and autophagy during cooled storage of stallion spermatozoa. Samples from seven stallions were split; half of the ejaculate was processed by single layer centrifugation, while the other half was extended unprocessed, and stored at 5°C for five days. During the time of storage, sperm motility (CASA, daily) and membrane integrity (flow cytometry, daily) were evaluated. Apoptosis was evaluated on days 1, 3 and 5 (active caspase 3, increase in membrane permeability, phosphatidylserine translocation and mitochondrial membrane potential) using flow cytometry. Furthermore, LC3B processing was investigated by western blotting at the beginning and at the end of the period of storage. The decrease in sperm quality over the period of storage was to a large extent due to apoptosis; single layer centrifugation selected non-apoptotic spermatozoa, but there were no differences in sperm motility between selected and unselected sperm. A high percentage of spermatozoa showed active caspase 3 upon ejaculation, and during the period of storage there was an increase of apoptotic spermatozoa but no changes in the percentage of live sperm, revealed by the SYBR-14/PI assay, were observed. LC3B was differentially processed in sperm after single layer centrifugation compared with native sperm. In processed sperm more LC3B-II was present than in non-processed samples; furthermore, in non-processed sperm there was an increase in LC3B-II after five days of cooled storage. These results indicate that apoptosis plays a major role in the sperm death during storage in refrigeration and that autophagy plays a role in the survival of spermatozoa representing a new pro-survival mechanism in spermatozoa not previously described.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Cavalos/fisiologia , Refrigeração , Preservação do Sêmen , Espermatozoides/fisiologia , Animais , Transporte Biológico , Fenômenos Biomecânicos/fisiologia , Morte Celular , Permeabilidade da Membrana Celular/fisiologia , Sobrevivência Celular , Masculino , Fosfatidilserinas/metabolismo , Refrigeração/veterinária , Análise do Sêmen , Preservação do Sêmen/métodos , Preservação do Sêmen/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA