Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Invest New Drugs ; 40(3): 622-633, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35312941

RESUMO

Chemoradiotherapy (CRT) for locally-advanced head and neck squamous cell carcinoma (LA-HSNCC) yields 5-year survival rates near 50% despite causing significant toxicity. Dichloroacetate (DCA), a pyruvate dehydrogenase kinase metabolic inhibitor, reduces tumor lactate production and has been used in cancer therapy previously. The safety of adding this agent to CRT is unknown. Our randomized, placebo-controlled, double-blind phase II study added DCA to cisplatin-based CRT in patients with LA-HNSCC. The primary endpoint was safety by adverse events (AEs). Secondary endpoints compared efficacy via 3-month end-of-treatment response, 5-year progression-free and overall survival. Translational research evaluated pharmacodynamics of serum metabolite response. 45 participants (21 DCA, 24 Placebo) were enrolled from May 2011-April 2014. Higher rates of all-grade drug related fevers (43% vs 8%, p = 0.01) and decreased platelet count (67% vs 33%, p = 0.02) were seen in DCA versus placebo. However, there were no significant differences in grade 3/4 AE rates. Treatment compliance to DCA/placebo, radiation therapy, and cisplatin showed no significant difference between groups. While end-of-treatment complete response rates were significantly higher in the DCA group compared to placebo (71.4% vs 37.5%, p = 0.0362), survival outcomes were not significantly different between groups. Treatment to baseline metabolites demonstrated a significant drop in pyruvate (0.47, p < 0.005) and lactate (0.61, p < 0.005) in the DCA group. Adding DCA to cisplatin-based CRT appears safe with no detrimental effect on survival and expected metabolite changes compared to placebo. This supports further investigation into combining metabolic agents to CRT. Trial registration number: NCT01386632, Date of Registration: July 1, 2011.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de Cabeça e Pescoço , Oxirredutases , Carcinoma de Células Escamosas de Cabeça e Pescoço , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Quimiorradioterapia/efeitos adversos , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Ácido Dicloroacético/administração & dosagem , Ácido Dicloroacético/efeitos adversos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Piruvatos/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
2.
Breast Cancer Res Treat ; 147(3): 539-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25212175

RESUMO

The unique metabolism of breast cancer cells provides interest in exploiting this phenomenon therapeutically. Metformin, a promising breast cancer therapeutic, targets complex I of the electron transport chain leading to an accumulation of reactive oxygen species (ROS) that eventually lead to cell death. Inhibition of complex I leads to lactate production, a metabolic byproduct already highly produced by reprogrammed cancer cells and associated with a poor prognosis. While metformin remains a promising cancer therapeutic, we sought a complementary agent to increase apoptotic promoting effects of metformin while attenuating lactate production possibly leading to greatly improved efficacy. Dichloroacetate (DCA) is a well-established drug used in the treatment of lactic acidosis which functions through inhibition of pyruvate dehydrogenase kinase (PDK) promoting mitochondrial metabolism. Our purpose was to examine the synergy and mechanisms by which these two drugs kill breast cancer cells. Cell lines were subjected to the indicated treatments and analyzed for cell death and various aspects of metabolism. Cell death and ROS production were analyzed using flow cytometry, Western blot analysis, and cell counting methods. Images of cells were taken with phase contrast microscopy or confocal microscopy. Metabolism of cells was analyzed using the Seahorse XF24 analyzer, lactate assays, and pH analysis. We show that when DCA and metformin are used in combination, synergistic induction of apoptosis of breast cancer cells occurs. Metformin-induced oxidative damage is enhanced by DCA through PDK1 inhibition which also diminishes metformin promoted lactate production. We demonstrate that DCA and metformin combine to synergistically induce caspase-dependent apoptosis involving oxidative damage with simultaneous attenuation of metformin promoted lactate production. Innovative combinations such as metformin and DCA show promise in expanding breast cancer therapies.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ácido Dicloroacético/farmacologia , Lactatos/metabolismo , Metformina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Ácido Dicloroacético/administração & dosagem , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7/efeitos dos fármacos , Metformina/administração & dosagem , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Espécies Reativas de Oxigênio/metabolismo
3.
Cancers (Basel) ; 16(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672607

RESUMO

Elevated glucose uptake and production of lactate are common features of cancer cells. Among many tumor-promoting effects, lactate inhibits immune responses and is positively correlated with radioresistance. Dichloroacetate (DCA) is an inhibitor of pyruvate dehydrogenase kinase that decreases lactate production. Quercetin is a flavonoid compound found in fruits and vegetables that inhibits glucose uptake and lactate export. We investigated the potential role and mechanisms of DCA, quercetin, and their combination, in the treatment of HPV-positive head and neck squamous cell carcinoma, an antigenic cancer subtype in need of efficacious adjuvant therapies. C57Bl/6-derived mouse oropharyngeal epithelial cells, a previously developed mouse model that was retrovirally transduced with HPV type-16 E6/E7 and activated Ras, were used to assess these compounds. Both DCA and quercetin inhibited colony formation and reduced cell viability, which were associated with mTOR inhibition and increased apoptosis through enhanced ROS production. DCA and quercetin reduced tumor growth and enhanced survival in immune-competent mice, correlating with decreased proliferation as well as decreased acidification of the tumor microenvironment and reduction of Foxp (+) Treg lymphocytes. Collectively, these data support the possible clinical application of DCA and quercetin as adjuvant therapies for head and neck cancer patients.

4.
Front Oncol ; 13: 1225220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583931

RESUMO

Background: Nicotinamide adenine dinucleotide (NAD+) is vital for not only energy metabolism but also signaling pathways. A major source of NAD+ depletion is the activation of poly (ADP-ribose) polymerase (PARP) in response to DNA damage. We have previously demonstrated that metformin can cause both caspase-dependent cell death and PARP-dependent cell death in the MCF7 breast cancer cells but not in the MDA-MB-231 (231) breast cancer cells while in high-glucose media. We hypothesize that depletion of NAD+ in MCF7 cells via activation of PARP contributes to the cell death caused by metformin. Nicotinamide phosphoribosyltransferase (NAMPT), a key rate-limiting step in converting nicotinamide (vitamin B3) into NAD+, is essential for regenerating NAD+ for normal cellular processes. Evidence shows that overexpression of NAMPT is associated with tumorigenesis. We hypothesize that NAMPT expression may determine the extent to which cancer cells are sensitive to metformin. Results: In this study, we found that metformin significantly decreases NAD+ levels over time, and that this could be delayed by PARP inhibitors. Pretreatment with NAD+ in MCF7 cells also prevents cell death and the enlargement of mitochondria and protects mitochondria from losing membrane potential caused by metformin. This leads to MCF7 cell resistance to metformin cytotoxicity in a manner similar to 231 cells. By studying the differences in NAD+ regulation in these two breast cancer cell lines, we demonstrate that NAMPT is expressed at higher levels in 231 cells than in MCF7 cells. When NAMPT is genetically repressed in 231 cells, they become much more sensitive to metformin-induced cell death. Conversely, overexpressing NAMPT in HEK-293 (293) cells causes the cells to be more resistant to metformin's growth inhibitory effects. The addition of a NAMPT activator also decreased the sensitivity of MCF7 cells to metformin, while the NAMPT activator, P7C3, protects against metformin-induced cytotoxicity. Conclusions: Depletion of cellular NAD+ is a key aspect of sensitivity of cancer cells to the cytotoxic effects of metformin. NAMPT plays a key role in maintaining sufficient levels of NAD+, and cells that express elevated levels of NAMPT are resistant to killing by metformin.

5.
Cancers (Basel) ; 14(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406526

RESUMO

This study investigates the effects of a dual selective Class I histone deacetylase (HDAC)/lysine-specific histone demethylase 1A (LSD1) inhibitor known as 4SC-202 (Domatinostat) on tumor growth and metastasis in a highly metastatic murine model of Triple Negative Breast Cancer (TNBC). 4SC-202 is cytotoxic and cytostatic to the TNBC murine cell line 4T1 and the human TNBC cell line MDA-MB-231; the drug does not kill the normal breast epithelial cell line MCF10A. Furthermore, 4SC-202 reduces cancer cell migration. In vivo studies conducted in the syngeneic 4T1 model, which closely mimics human TNBC in terms of sites of metastasis, reveal reduced tumor burden and lung metastasis. The mechanism of action of 4SC-202 may involve effects on cancer stem cells (CSC) which can self-renew and form metastatic lesions. Approximately 5% of the total 4T1 cell population grown in three-dimensional scaffolds had a distinct CD44high/CD24low CSC profile which decreased after treatment. Bulk transcriptome (RNA) sequencing analyses of 4T1 tumors reveal changes in metastasis-related pathways in 4SC-202-treated tumors, including changes to expression levels of genes implicated in cell migration and cell motility. In summary, 4SC-202 treatment of tumors from a highly metastatic murine model of TNBC reduces metastasis and warrants further preclinical studies.

6.
RNA Biol ; 8(3): 365-71, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21508681

RESUMO

The cyclin dependent kinase inhibitor p27 (Kip1) plays an important role in controlling the eukaryotic cell cycle. The 5'-untranslated region of the p27 mRNA harbors an internal ribosome entry site (IRES) which may facilitate synthesis of p27 in certain conditions. In this study, the RNA-associated protein CUGBP1 was shown to interact with the human p27 5'-untranslated region. Overexpression of CUGBP1 inhibited endogenous p27 expression and reduced translation initiation through the p27 IRES. In contrast, repression of CUGBP1 by siRNA transfection enhanced p27 protein levels and stimulated p27 IRES activity. Addition of recombinant CUGBP1 repressed p27 IRES reporter mRNA translation in vitro. At last, Our finding showed that cytosolic form of CUGBP1 binds efficiently to the p27 5'-untranslated region.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Sítios de Ligação , Proteínas CELF1 , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Citoplasma/metabolismo , Humanos , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transfecção
7.
Oncotarget ; 11(17): 1493-1504, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32391119

RESUMO

Intratumoral lactate production negatively correlates with survival and tumor clearance in the setting of human papillomavirus positive oropharyngeal squamous cell carcinoma (HPV-positive OPSCC). Robust anti-tumor immune activity is required for tumor clearance in human patients and animal models of this disease, and intratumoral lactate interferes with this process. While lactate is known to directly inhibit T cell activity, recent evidence has demonstrated that lactate can affect gene expression in multiple cell types. We therefore sought to determine if lactate in the tumor microenvironment could aid immune evasion by inducing the expression of immune checkpoint co-inhibitors. Using a mouse cell line transformed with HPV16 E6, E7, and HRASG12V, we determined that OPSCC cells carrying the HRASG12V mutant showed significantly increased expression of PD-L1 in the presence of extracellular lactate. Furthermore, we demonstrate here that lactate activates the MEK/ERK pathway in Ras-mutated cells.

8.
Cancers (Basel) ; 12(3)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210076

RESUMO

Central nervous system atypical teratoid/rhabdoid tumors (ATRTs) are rare and aggressive tumors with a very poor prognosis. Current treatments for ATRT include resection of the tumor, followed by systemic chemotherapy and radiation therapy, which have toxic side effects for young children. Gene expression analyses of human ATRTs and normal brain samples indicate that ATRTs have aberrant expression of epigenetic markers including class I histone deacetylases (HDAC's) and lysine demethylase (LSD1). Here, we investigate the effect of a small molecule epigenetic modulator known as Domatinostat (4SC-202), which inhibits both class I HDAC's and Lysine Demethylase (LSD1), on ATRT cell survival and single cell heterogeneity. Our findings suggest that 4SC-202 is both cytotoxic and cytostatic to ATRT in 2D and 3D scaffold cell culture models and may target cancer stem cells. Single-cell RNA sequencing data from ATRT-06 spheroids treated with 4SC-202 have a reduced population of cells overexpressing stem cell-related genes, including SOX2. Flow cytometry and immunofluorescence on 3D ATRT-06 scaffold models support these results suggesting that 4SC-202 reduces expression of cancer stem cell markers SOX2, CD133, and FOXM1. Drug-induced changes to the systems biology landscape are also explored by multi-omics enrichment analyses. In summary, our data indicate that 4SC-202 has both cytotoxic and cytostatic effects on ATRT, targets specific cell sub-populations, including those with cancer stem-like features, and is an important potential cancer therapeutic to be investigated in vivo.

9.
RNA Biol ; 6(1): 84-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19106631

RESUMO

The cyclin dependent kinase inhibitor p27(Kip1) is a key cell cycle regulatory protein that is often downregulated in cancer cells. The cellular levels of p27(Kip1) are regulated, in part, through translational control mechanisms. The 5'-UTR of the p27(Kip1) mRNA is known to harbor an IRES that may facilitate expression of p27(Kip1) under conditions of stress such as loss of cell adhesion or growth factor and nutrient deprivation. The results presented here further characterize the p27(Kip1) 5'-UTR and its IRES activity. We confirm that the major transcription start site of the p27(Kip1) gene produces an mRNA with a 5'-UTR of approximately 472 nucleotides. Other minor transcripts are also observed but the 472 nucleotide 5'-UTR displays the highest IRES activity. A structural model for the 472 nucleotide 5'-UTR was derived from nuclease digestion patterns coupled with MFOLD secondary structural prediction software. These results indicate that the 5'-UTR has significant secondary structure but also contains a large single-stranded loop that extends from nucleotides -31 to -66 relative to the start codon. Mapping of the ribosome entry window indicates that the ribosome is recruited to this single-stranded loop. The single-stranded loop also includes a U-rich sequence that has previously been shown to bind several proteins, including HuR. This is significant because HuR has previously been shown to inhibit p27(Kip1) IRES activity and cause downregulation of endogenous p27(Kip1) protein levels. Thus HuR may inhibit IRES activity by blocking the ribosome entry site.


Assuntos
Regiões 5' não Traduzidas , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Sequência de Bases , Adesão Celular , Linhagem Celular Tumoral , Códon , DNA/química , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nucleotídeos/química , Fases de Leitura Aberta , RNA Mensageiro/metabolismo , Ribonucleases/química
10.
Nucleic Acids Res ; 35(14): 4767-78, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17617641

RESUMO

Several recent publications have explored cap-independent translation through an internal ribosome entry site (IRES) in the 5'-UTR of the mRNA encoding the cyclin-dependent kinase inhibitor p27. The major experimental tool used in these reports was the use of bicistronic reporter constructs in which the 5'-UTR was inserted between the upstream and downstream cistrons. None of these reports has completely ruled out the possibility that the 5'-UTR has either cryptic promoter activity or a cryptic splice acceptor site. Either of these possibilities could result in expression of a monocistronic mRNA encoding the downstream cistron and false identification of an IRES. Indeed, Liu et al. recently published data suggesting that the p27 5'-UTR harbors cryptic promoter activity which accounts for its putative IRES activity. In this report, we have explored this potential problem further using promoterless bicistronic constructs coupled with RNase protection assays, siRNA knockdown of individual cistrons, RT-PCR to detect mRNA encoded by the bicistronic reporter with high sensitivity, direct transfection of bicistronic mRNAs, and insertion of an iron response element into the bicistronic reporter. The results do not support the conclusion that the p27 5'-UTR has significant functional promoter activity or cryptic splice sites, but rather that it is able to support cap-independent initiation of translation.


Assuntos
Regiões 5' não Traduzidas/química , Inibidor de Quinase Dependente de Ciclina p27/genética , Iniciação Traducional da Cadeia Peptídica , Animais , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Humanos , Ferro/metabolismo , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , Capuzes de RNA/metabolismo , Interferência de RNA , RNA Mensageiro/análise , Elementos de Resposta , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Transfecção
11.
J Oncol ; 2019: 3253696, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941174

RESUMO

Of the deaths attributed to cancer, 90% are due to metastasis. Treatments that prevent or cure metastasis remain elusive. Low expression of extracellular superoxide dismutase (EcSOD or SOD3) has been associated with poor outcomes and increased metastatic potential in multiple types of cancer. Here, we characterize the antimetastatic therapeutic mechanisms of a macromolecular extracellular SOD3-mimetic polynitroxyl albumin (PNA, also known as VACNO). PNA is macromolecular human serum albumin conjugated with multiple nitroxide groups and acts as an SOD-mimetic. Here we show that PNA works as a SOD3-mimetic in a highly metastatic 4T1 mouse model of triple negative breast cancer (TNBC). In vitro, PNA dose dependently inhibited 4T1 proliferation, colony formation, and reactive oxygen species (ROS) formation. In vivo, PNA enhanced reperfusion time in the hypoxic cores of 4T1 tumors as measured by ultrasound imaging. Furthermore, PNA enhanced ultrasound signal intensity within the cores of the 4T1 tumors, indicating PNA can increase blood flow and blood volume within the hypoxic cores of tumors. Lung metastasis from 4T1 flank tumor was inhibited by PNA in the presence or absence of doxorubicin, a chemotherapy agent that produces superoxide and promotes metastasis. In a separate study, PNA increased the survival of mice with 4T1 flank tumors when used in conjunction with three standard chemotherapy drugs (paclitaxel, doxorubicin, and cyclophosphamide), as compared to treatment with chemotherapy alone. In this study, PNA-increased survival was also correlated with reduction of lung metastasis. These results support the hypothesis that PNA works through the inhibition of extracellular superoxide/ROS production leading to the conversion of 4T1 cells from a metastatic tumorigenic state to a cytostatic state. These findings support future clinical trials of PNA as an antimetastatic SOD3-mimetic drug to increase overall survival in TNBC patients.

12.
Cancers (Basel) ; 10(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513596

RESUMO

Tumor cell metabolism differs from that of normal cells, conferring tumors with metabolic advantages but affording opportunities for therapeutic intervention. Accordingly, metabolism-targeting therapies have shown promise. However, drugs targeting singular metabolic pathways display limited efficacy, in part due to the tumor's ability to compensate by using other metabolic pathways to meet energy and growth demands. Thus, it is critical to identify novel combinations of metabolism-targeting drugs to improve therapeutic efficacy in the face of compensatory cellular response mechanisms. Our lab has previously identified that the anti-cancer activity of propranolol, a non-selective beta-blocker, is associated with inhibition of mitochondrial metabolism in head and neck squamous cell carcinoma (HNSCC). In response to propranolol, however, HNSCC exhibits heightened glycolytic activity, which may limit the effectiveness of propranolol as a single agent. Thus, we hypothesized that propranolol's metabolic effects promote a state of enhanced glucose dependence, and that propranolol together with glycolytic inhibition would provide a highly effective therapeutic combination in HNSCC. Here, we show that glucose deprivation synergizes with propranolol for anti-cancer activity, and that the rational combination of propranolol and dichloroacetate (DCA), a clinically available glycolytic inhibitor, dramatically attenuates tumor cell metabolism and mTOR signaling, inhibits proliferation and colony formation, and induces apoptosis. This therapeutic combination displays efficacy in both human papillomavirus-positive HPV(+) and HPV(-) HNSCC cell lines, as well as a recurrent/metastatic model, while leaving normal tonsil epithelial cells relatively unaffected. Importantly, the combination significantly delays tumor growth in vivo with no evidence of toxicity. Additionally, the combination of propranolol and DCA enhances the effects of chemoradiation and sensitizes resistant cells to cisplatin and radiation. This novel therapeutic combination represents a promising treatment strategy which may overcome some of the limitations of targeting individual metabolic pathways in cancer.

13.
Oncogenesis ; 7(10): 81, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297705

RESUMO

The incidence of human papillomavirus-associated head and neck squamous cell carcinoma (HPV[ + ] HNSCC) is rapidly increasing. Although clinical management of primary HPV( + ) HNSCC is relatively successful, disease progression, including recurrence and metastasis, is often fatal. Moreover, patients with progressive disease face limited treatment options and significant treatment-associated morbidity. These clinical data highlight the need to identify targetable mechanisms that drive disease progression in HPV( + ) HNSCC to prevent and/or treat progressive disease. Interestingly, ß-adrenergic signaling has recently been associated with pro-tumor processes in several disease types. Here we show that an aggressive murine model of recurrent/metastatic HPV( + ) HNSCC upregulates ß2-adrenergic receptor (ß2AR) expression, concordant with significantly heightened mitochondrial metabolism, as compared with the parental model from which it spontaneously derived. ß-Adrenergic blockade effectively inhibits in vitro proliferation and migratory capacity in this model, effects associated with an attenuation of hyperactive mitochondrial respiration. Importantly, propranolol, a clinically available nonselective ß-blocker, significantly slows primary tumor growth, inhibits metastatic development, and shows additive benefit alongside standard-of-care modalities in vivo. Further, via CRISPR/Cas9 technology, we show that the hyperactive mitochondrial metabolic profile and aggressive in vivo phenotype of this recurrent/metastatic model are dependent on ß2AR expression. These data implicate ß2AR as a modulator of mitochondrial metabolism and disease progression in HPV( + ) HNSCC, and warrant further investigation into the use of ß-blockers as low cost, relatively tolerable, complementary treatment options in the clinical management of this disease.

14.
Mol Cell Biol ; 23(12): 4035-45, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773549

RESUMO

p27(Kip1) levels increase in many cells as they leave the cell cycle and begin to differentiate. The increase in p27(Kip1) levels generally precedes the expression of differentiation-specific genes. Previous studies from our laboratory showed that the overexpression of p27(Kip1) enhances myelin basic protein (MBP) promoter activity. This activation is specific to p27(Kip1). Additionally, inhibition of cyclin-dependent kinase activity alone is not sufficient to increase MBP expression. In this study, we focused on understanding how p27(Kip1) can activate gene transcription by using the MBP gene in oligodendrocytes as a model. We show that the enhancement of MBP promoter activity by p27(Kip1) is mediated by a proximal region of the MBP promoter that contains a conserved GC box binding sequence. This sequence binds transcription factors Sp1 and Sp3. Increased expression of p27(Kip1) increases the level of Sp1 promoter binding to the GC box but does not change the level of Sp3 binding. The binding of Sp1 to this element activates the MBP promoter. p27(Kip1) leads to increased Sp1 binding through a decrease in Sp1 protein turnover. Enhancement of MBP promoter activity by an increase in the level of p27(Kip1) involves a novel mechanism that is mediated through the stabilization and binding of transcription factor Sp1.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Proteína Básica da Mielina/metabolismo , Fator de Transcrição Sp1/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27 , Eletroforese em Gel de Poliacrilamida , Luciferases/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Oligodendroglia/metabolismo , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Fatores de Tempo , Transcrição Gênica , Ativação Transcricional , Transfecção
15.
Oncotarget ; 7(17): 24228-41, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27015118

RESUMO

Effective treatments for recurrent/metastatic human papillomavirus-positive (HPV+) head and neck squamous cell cancer (HNSCC) are limited. To aid treatment development, we characterized a novel murine model of recurrent/metastatic HPV+ HNSCC. Further analysis of the parental tumor cell line and its four recurrent/metastatic derivatives led to preclinical testing of an effective treatment option for this otherwise fatal disease. Reverse phase protein arrays identified key signaling cascades in the parental and recurrent/metastatic cell lines. While protein expression profiles differed among the recurrent/metastatic cell lines, activated proteins associated with the mTOR signaling cascade were a commonality. Based on these data, mTOR inhibition was evaluated as an adjuvant treatment for recurrent/metastatic disease. mTOR activity and treatment response were assessed in vitro by western blot, Seahorse, proliferation, clonogenic, and migration assays. Standard-of-care cisplatin/radiation therapy (CRT) versus CRT/rapamycin were compared in vivo. Low-dose rapamycin inhibited mTOR signaling, decreasing proliferation (43%) and migration (62%) while it enhanced CRT-induced cytotoxicity (3.3 fold) in clonogenic assays. Furthermore, rapamycin re-sensitized CRT-resistant, metastatic tumors to treatment in vivo, improving long-term cures (0-30% improved to 78-100%, depending on the recurrent/metastatic cell line) and limiting lymph node metastasis (32%) and lung metastatic burden (30 fold). Studies using immune compromised mice suggested rapamycin's effect on metastasis is independent of the adaptive immune response. These data suggest a role of mTOR activation in HPV+ HNSCC recurrent/metastatic disease and that adjuvant mTOR inhibition may enhance treatment of resistant, metastatic cell populations at the primary site and limit distant metastasis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Infecções por Papillomavirus/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/secundário , Carcinoma de Células Escamosas/virologia , Proliferação de Células/efeitos dos fármacos , Quimioterapia Adjuvante , Cisplatino/administração & dosagem , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Metástase Linfática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/virologia , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Sirolimo/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Mol Cell Biol ; 35(23): 4006-17, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26391949

RESUMO

Synthesis of the p53 tumor suppressor and its subsequent activation following DNA damage are critical for its protection against tumorigenesis. We previously discovered an internal ribosome entry site (IRES) at the 5' untranslated region of the p53 mRNA. However, the connection between IRES-mediated p53 translation and p53's tumor suppressive function is unknown. In this study, we identified two p53 IRES trans-acting factors, translational control protein 80 (TCP80), and RNA helicase A (RHA), which positively regulate p53 IRES activity. Overexpression of TCP80 and RHA also leads to increased expression and synthesis of p53. Furthermore, we discovered two breast cancer cell lines that retain wild-type p53 but exhibit defective p53 induction and synthesis following DNA damage. The levels of TCP80 and RHA are extremely low in both cell lines, and expression of both proteins is required to significantly increase the p53 IRES activity in these cells. Moreover, we found cancer cells transfected with a shRNA against TCP80 not only exhibit decreased expression of TCP80 and RHA but also display defective p53 induction and diminished ability to induce senescence following DNA damage. Therefore, our findings reveal a novel mechanism of p53 inactivation that links deregulation of IRES-mediated p53 translation with tumorigenesis.


Assuntos
Neoplasias da Mama/genética , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , Proteína Supressora de Tumor p53/genética , Regiões 5' não Traduzidas , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Feminino , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Fator Nuclear 90/genética , Proteínas do Fator Nuclear 90/metabolismo , Ligação Proteica , Proteólise , Proteína Supressora de Tumor p53/metabolismo
17.
Biomed Res Int ; 2015: 708158, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26273641

RESUMO

Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES) that is located at the 5'-untranslated region (UTR) of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80) has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA) following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.


Assuntos
Dano ao DNA/fisiologia , Sítios Internos de Entrada Ribossomal/fisiologia , Proteínas do Fator Nuclear 90/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Humanos , Células MCF-7
18.
Gene ; 313: 161-7, 2003 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-12957387

RESUMO

Expression of myelin basic protein in differentiating oligodendrocytes is mainly regulated at the transcriptional level. To better understand the regulation of myelin basic protein gene expression in mammalian cells, we cloned and characterized the rat myelin basic protein promoter by a genome walking technique. Extensive sequence homology has been found among mouse, rat and human MBP promoters. Alignment of the proximal core promoter of mouse and rat reveals highly conserved cis-elements that are important for regulating myelin basic protein gene transcription. One major transcription start site along with two minor sites have been identified in both mouse and rat myelin basic protein gene promoters using RNA ligase-mediated rapid amplification of 5' cDNA ends. The amplified rat myelin basic protein promoter was cloned into a luciferase reporter construct. Transient transfection experiments show that both mouse and rat myelin basic protein promoters yield increased expression when oligodendrocytes differentiate. The sequence and characterization of the rat MBP promoter provide a useful tool to investigate MBP gene regulation in mammalian cells.


Assuntos
Proteína Básica da Mielina/genética , Regiões Promotoras Genéticas/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Clonagem Molecular , DNA/química , DNA/genética , Expressão Gênica , Luciferases/genética , Luciferases/metabolismo , Camundongos , Dados de Sequência Molecular , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Transfecção
19.
Cancer Cell Int ; 3(1): 2, 2003 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-12633504

RESUMO

BACKGROUND: Eukaryotic initiation factor 4E (eIF4E) is essential for cap-dependent initiation of translation. Cell proliferation is associated with increased activity of eIF4E and elevated expression of eIF4E leads to tumorigenic transformation. Many tumors express very high levels of eIF4E and this may be a critical factor in progression of the disease. In contrast, overexpression of 4EBP, an inhibitor of eIF4E, leads to cell cycle arrest and phenotypic reversion of some transformed cells. RESULTS: A constitutively active form of 4EBP-1 was inducibly expressed in the human breast cancer cell line MCF7. Induction of constitutively active 4EBP-1 led to cell cycle arrest. This was not associated with a general inhibition of protein synthesis but rather with changes in specific cell cycle regulatory proteins. Cyclin D1 was downregulated while levels of the CDK inhibitor p27Kip1 were increased. The levels of cyclin E and CDK2 were unaffected but the activity of CDK2 was significantly reduced due to increased association with p27Kip1. The increase in p27Kip1 did not reflect changes in p27Kip1 mRNA or degradation rates. Rather, it was associated with enhanced synthesis of the protein, even though 4EBP-1 is expected to inhibit translation. This could be explained, at least in part, by the ability of the p27Kip1 5'-UTR to mediate cap-independent translation, which was also enhanced by expression of constitutively active 4EBP-1. CONCLUSIONS: Expression of active 4EBP-1 in MCF7 leads to cell cycle arrest which is associated with downregulation of cyclin D1 and upregulation of p27Kip1. Upregulation of p27Kip1reflects increased synthesis which corresponds to enhanced cap-independent translation through the 5'-UTR of the p27Kip1 mRNA.

20.
Int J Dev Neurosci ; 20(2): 103-11, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12034141

RESUMO

In the central nervous system oligodendrocyte differentiation is accompanied by the activation of a specific transcriptional program responsible for the synthesis of myelin genes. One of the signals leading to the expression of myelin components, such as the myelin basic protein (MBP) gene is cyclic AMP (cAMP). Previous work using a cell line in which the endogenous MBP gene can be induced by increased cAMP levels (D6P2T) showed that the region of the MBP gene that was required for induction of the gene by cAMP lay between -248 and -105 in the 5' flanking region. This region contains numerous transcription factor binding sites, including sites for NF1, Sp1, and MEBA. In order to determine if the NF1 site itself was specifically responsible for the cAMP responsiveness of the MBP promoter, stably transfected cells carrying MBP promoter deletion constructs were used. Deletion of just the NF1 site caused loss of responsiveness to cAMP levels. Furthermore, site-specific mutations in the NF1 site that interfere with NF1 protein binding, in the context of the full length promoter, abolished cAMP responsiveness and caused derepression of the promoter. Analysis of protein binding to the NF1 site showed that the mutation resulted in loss of binding to the site and that the proteins binding at the site are modified in the presence of cAMP elevating agents. These results demonstrate that the NF1 site is indispensable for cAMP responsiveness of the MBP promoter and, together with other DNA elements, plays a role in controlling MBP gene expression.


Assuntos
AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Básica da Mielina/biossíntese , Proteína Básica da Mielina/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Técnicas de Cultura de Células , Diferenciação Celular , AMP Cíclico/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Expressão Gênica , Fatores de Transcrição NFI , Proteínas Nucleares/metabolismo , Oligodendroglia , Regiões Promotoras Genéticas , Ligação Proteica , Ratos , Deleção de Sequência , Fatores de Transcrição/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA