Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Physiol ; 601(1): 25-35, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851953

RESUMO

The thalamus and cortex are interconnected both functionally and anatomically and share a common developmental trajectory. Interactions between the mediodorsal thalamus (MD) and different parts of the prefrontal cortex are essential in cognitive processes, such as learning and adaptive decision-making. Cortico-thalamocortical interactions involving other dorsal thalamic nuclei, including the anterior thalamus and pulvinar, also influence these cognitive processes. Our work, and that of others, indicates a crucial influence of these interdependent cortico-thalamocortical neural networks that contributes actively to the processing of information within the cortex. Each of these thalamic nuclei also receives potent subcortical inputs that are likely to provide additional influences on their regulation of cortical activity. Here, we highlight our current neuroscientific research aimed at establishing when cortico-MD thalamocortical neural network communication is vital within the context of a rapid learning and memory discrimination task. We are collecting evidence of MD-prefrontal cortex neural network communication in awake, behaving male rhesus macaques. Given the prevailing evidence, further studies are needed to identify both broad and specific mechanisms that govern how the MD, anterior thalamus and pulvinar cortico-thalamocortical interactions support learning, memory and decision-making. Current evidence shows that the MD (and the anterior thalamus) are crucial for frontotemporal communication, and the pulvinar is crucial for frontoparietal communication. Such work is crucial to advance our understanding of the neuroanatomical and physiological bases of these brain functions in humans. In turn, this might offer avenues to develop effective treatment strategies to improve the cognitive deficits often observed in many debilitating neurological disorders and diseases and in neurodegeneration.


Assuntos
Aprendizagem , Tálamo , Animais , Masculino , Humanos , Macaca mulatta , Aprendizagem/fisiologia , Tálamo/fisiologia , Córtex Pré-Frontal/fisiologia , Vias Neurais/fisiologia
2.
Adv Exp Med Biol ; 1423: 11-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525029

RESUMO

The fornix, the limbic system's white matter tract connecting the extended hippocampal system to subcortical structures of the medial diencephalon, is strongly associated with learning and memory in humans and nonhuman primates (NHPs). Here, we sought to investigate alterations in structural connectivity across key cortical and subcortical regions after fornix transection in NHPs. We collected diffusion-weighted MRI (dMRI) data from three macaque monkeys that underwent bilateral fornix transection during neurosurgery and from four age- and cohort-matched control macaques that underwent surgery to implant a head-post but remained neurologically intact. dMRI data were collected from both groups at two time points, before and after the surgeries, and scans took place at around the same time for the two groups. We used probabilistic tractography and employed the number of tracking streamlines to quantify connectivity across our regions of interest (ROIs), in all dMRI sessions. In the neurologically intact monkeys, we observed high connectivity across certain ROIs, including the CA3 hippocampal subfield with the retrosplenial cortex (RSC), the anterior thalamus with the RSC, and the RSC with the anterior cingulate cortex (ACC). However, we found that, compared to the control group, the fornix-transected monkeys showed marked, significant, connectivity changes including increases between the anterior thalamus and the ACC and between the CA3 and the ACC, as well as decreases between the CA3 and the RSC. Our results highlight cortical and subcortical network changes after fornix transection and identify candidate indirect connectivity routes that may support memory functions after damage and/or neurodegeneration.


Assuntos
Imagem de Tensor de Difusão , Fórnice , Animais , Humanos , Fórnice/diagnóstico por imagem , Fórnice/cirurgia , Hipocampo/diagnóstico por imagem , Hipocampo/cirurgia , Giro do Cíngulo , Macaca mulatta , Vias Neurais/diagnóstico por imagem
3.
J Neurosci ; 40(41): 7887-7901, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32900835

RESUMO

The frontal cortex and temporal lobes together regulate complex learning and memory capabilities. Here, we collected resting-state functional and diffusion-weighted MRI data before and after male rhesus macaque monkeys received extensive training to learn novel visuospatial discriminations (reward-guided learning). We found functional connectivity changes in orbitofrontal, ventromedial prefrontal, inferotemporal, entorhinal, retrosplenial, and anterior cingulate cortices, the subicular complex, and the dorsal, medial thalamus. These corticocortical and thalamocortical changes in functional connectivity were accompanied by related white matter structural alterations in the uncinate fasciculus, fornix, and ventral prefrontal tract: tracts that connect (sub)cortical networks and are implicated in learning and memory processes in monkeys and humans. After the well-trained monkeys received fornix transection, they were impaired in learning new visuospatial discriminations. In addition, the functional connectivity profile that was observed after the training was altered. These changes were accompanied by white matter changes in the ventral prefrontal tract, although the integrity of the uncinate fasciculus remained unchanged. Our experiments highlight the importance of different communication relayed among corticocortical and thalamocortical circuitry for the ability to learn new visuospatial associations (learning-to-learn) and to make reward-guided decisions.SIGNIFICANCE STATEMENT Frontal neural networks and the temporal lobes contribute to reward-guided learning in mammals. Here, we provide novel insight by showing that specific corticocortical and thalamocortical functional connectivity is altered after rhesus monkeys received extensive training to learn novel visuospatial discriminations. Contiguous white matter fiber pathways linking these gray matter structures, namely, the uncinate fasciculus, fornix, and ventral prefrontal tract, showed structural changes after completing training in the visuospatial task. Additionally, different patterns of functional and structural connectivity are reported after removal of subcortical connections within the extended hippocampal system, via fornix transection. These results highlight the importance of both corticocortical and thalamocortical interactions in reward-guided learning in the normal brain and identify brain structures important for memory capabilities after injury.


Assuntos
Córtex Cerebral/fisiologia , Condicionamento Operante/fisiologia , Discriminação Psicológica/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Substância Branca/fisiologia , Animais , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Fórnice/fisiologia , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia , Vias Neurais/diagnóstico por imagem , Recompensa , Percepção Espacial/fisiologia , Tálamo/diagnóstico por imagem , Percepção Visual/fisiologia , Substância Branca/diagnóstico por imagem
4.
Neuroimage ; 229: 117700, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418072

RESUMO

Scientific excellence is a necessity for progress in biomedical research. As research becomes ever more international, establishing international collaborations will be key to advancing our scientific knowledge. Understanding the similarities in standards applied by different nations to animal research, and where the differences might lie, is crucial. Cultural differences and societal values will also contribute to these similarities and differences between countries and continents. Our overview is not comprehensive for all species, but rather focuses on non-human primate (NHP) research, involving New World marmosets and Old World macaques, conducted in countries where NHPs are involved in neuroimaging research. Here, an overview of the ethics and regulations is provided to help assess welfare standards amongst primate research institutions. A comparative examination of these standards was conducted to provide a basis for establishing a common set of standards for animal welfare. These criteria may serve to develop international guidelines, which can be managed by an International Animal Welfare and Use Committee (IAWUC). Internationally, scientists have a moral responsibility to ensure excellent care and welfare of their animals, which in turn, influences the quality of their research. When working with animal models, maintaining a high quality of care ("culture of care") and welfare is essential. The transparent promotion of this level of care and welfare, along with the results of the research and its impact, may reduce public concerns associated with animal experiments in neuroscience research.


Assuntos
Acesso à Informação/ética , Bem-Estar do Animal/ética , Pesquisa Biomédica/ética , Internacionalidade , Neurociências/ética , Bem-Estar do Animal/legislação & jurisprudência , Animais , Pesquisa Biomédica/legislação & jurisprudência , Membro de Comitê , Humanos , Neurociências/legislação & jurisprudência , Primatas
5.
Neuroimage ; 235: 118017, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794355

RESUMO

Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem/métodos , Animais , Humanos , Optogenética , Primatas
6.
Neurobiol Learn Mem ; 185: 107525, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555510

RESUMO

Retrosplenial cortex (RSC) lies at the interface between sensory and cognitive networks in the brain and mediates between these, although it is not yet known how. It has two distinct subregions, granular (gRSC) and dysgranular (dRSC). The present study investigated how these subregions differ with respect to their electrophysiology and thalamic connectivity, as a step towards understanding their functions. The gRSC is more closely connected to the hippocampal formation, in which theta-band local field potential oscillations are prominent. We, therefore, compared theta-rhythmic single-unit activity between the two RSC subregions and found, mostly in gRSC, a subpopulation of non-directional cells with spiking activity strongly entrained by theta oscillations, suggesting a stronger coupling of gRSC to the hippocampal system. We then used retrograde tracers to test for differential inputs to RSC from the anteroventral thalamus (AV). We found that gRSC and dRSC differ in their afferents from two AV subfields: dorsomedial (AVDM) and ventrolateral (AVVL). Specifically: (1) as a whole AV projects more strongly to gRSC; (2) AVVL targets both gRSC and dRSC, while AVDM provides a selective projection to gRSC, (3) the gRSC projection is layer-specific: AVDM targets specifically gRSC superficial layers. These same AV projections are topographically organized with ventral AV neurons innervating rostral RSC and dorsal AV neurons innervating caudal RSC. These combined results suggest the existence of two distinct but interacting RSC subcircuits: one connecting AVDM to gRSC that may comprise part of the cognitive hippocampal system, and the other connecting AVVL to both RSC regions that may link hippocampal and perceptual regions. We suggest that these subcircuits are distinct to allow for differential weighting during integration of converging sensory and cognitive computations: an integration that may take place in thalamus, RSC, or both.


Assuntos
Córtex Cerebral/fisiologia , Giro do Cíngulo/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Eletroencefalografia , Giro do Cíngulo/anatomia & histologia , Masculino , Vias Neurais/anatomia & histologia , Ratos , Ritmo Teta/fisiologia
7.
Eur J Neurosci ; 49(8): 1041-1054, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30022540

RESUMO

Distributed brain networks govern adaptive decision-making, new learning and rapid updating of information. However, the functional contribution of the rhesus macaque monkey parvocellular nucleus of the mediodorsal thalamus (MDpc) in these key higher cognitive processes remains unknown. This study investigated the impact of MDpc damage in cognition. Preoperatively, animals were trained on an object-in-place scene discrimination task that assesses rapid learning of novel information within each session. Bilateral neurotoxic (NMDA and ibotenic acid) MDpc lesions did not impair new learning unless the monkey had also sustained damage to the magnocellular division of the MD (MDmc). Contralateral unilateral MDpc and MDmc damage also impaired new learning, while selective unilateral MDmc damage produced new learning deficits that eventually resolved with repeated testing. In contrast, during food reward (satiety) devaluation, monkeys with either bilateral MDpc damage or combined MDpc and MDmc damage showed attenuated food reward preferences compared to unoperated control monkeys; the selective unilateral MDmc damage left performance intact. Our preliminary results demonstrate selective dissociable roles for the two adjacent nuclei of the primate MD, namely, MDpc, as part of a frontal cortical network, and the MDmc, as part of a frontal-temporal cortical network, in learning, memory and the cognitive control of behavioural choices after changes in reward value. Moreover, the functional cognitive deficits produced after differing MD damage show that the different subdivisions of the MD thalamus support distributed neural networks to rapidly and fluidly incorporate task-relevant information, in order to optimise the animals' ability to receive rewards.


Assuntos
Tomada de Decisões/fisiologia , Aprendizagem por Discriminação/fisiologia , Núcleo Mediodorsal do Tálamo/fisiologia , Animais , Discriminação Psicológica/fisiologia , Feminino , Macaca mulatta , Masculino , Reconhecimento Visual de Modelos/fisiologia , Recompensa
8.
J Neurosci ; 36(33): 8574-85, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535906

RESUMO

UNLABELLED: In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this "multiple-demand" (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. SIGNIFICANCE STATEMENT: In humans, a frontoparietal "multiple-demand" (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar network to exist in nonhuman primates, but this remains controversial. Here, we sought to identify a macaque counterpart to the human MD system using fMRI connectivity. Putative macaque MD regions were functionally connected under anesthesia and were further refined by iterative optimization. The result is a network including lateral frontal, dorsomedial frontal, and insular and inferior parietal regions closely similar to the human counterpart. The proposed macaque MD regions can be useful in guiding electrophysiological recordings or in task-based fMRI to test predictions of similar functional properties to human MD cortex.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Vias Neurais/fisiologia , Animais , Feminino , Humanos , Imageamento Tridimensional , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Vias Neurais/diagnóstico por imagem
9.
PLoS Biol ; 12(9): e1001940, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25180883

RESUMO

Despite widespread interest in social dominance, little is known of its neural correlates in primates. We hypothesized that social status in primates might be related to individual variation in subcortical brain regions implicated in other aspects of social and emotional behavior in other mammals. To examine this possibility we used magnetic resonance imaging (MRI), which affords the taking of quantitative measurements noninvasively, both of brain structure and of brain function, across many regions simultaneously. We carried out a series of tests of structural and functional MRI (fMRI) data in 25 group-living macaques. First, a deformation-based morphometric (DBM) approach was used to show that gray matter in the amygdala, brainstem in the vicinity of the raphe nucleus, and reticular formation, hypothalamus, and septum/striatum of the left hemisphere was correlated with social status. Second, similar correlations were found in the same areas in the other hemisphere. Third, similar correlations were found in a second data set acquired several months later from a subset of the same animals. Fourth, the strength of coupling between fMRI-measured activity in the same areas was correlated with social status. The network of subcortical areas, however, had no relationship with the sizes of individuals' social networks, suggesting the areas had a simple and direct relationship with social status. By contrast a second circuit in cortex, comprising the midsuperior temporal sulcus and anterior and dorsal prefrontal cortex, covaried with both individuals' social statuses and the social network sizes they experienced. This cortical circuit may be linked to the social cognitive processes that are taxed by life in more complex social networks and that must also be used if an animal is to achieve a high social status.


Assuntos
Tonsila do Cerebelo/fisiologia , Hierarquia Social , Hipotálamo/fisiologia , Macaca mulatta/fisiologia , Núcleos da Rafe do Mesencéfalo/fisiologia , Rede Nervosa/fisiologia , Animais , Mapeamento Encefálico , Corpo Estriado/fisiologia , Emoções/fisiologia , Feminino , Substância Cinzenta/fisiologia , Macaca mulatta/psicologia , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/fisiologia , Lobo Temporal/fisiologia
10.
Cereb Cortex ; 26(6): 2905-18, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26946129

RESUMO

Primate retrosplenial cortex (RSC) is important for memory but patient neuropathologies are diffuse so its key contributions to memory remain elusive. This study provides the first causal evidence that RSC in macaque monkeys is crucial for postoperative retention of preoperatively and postoperatively acquired memories. Preoperatively, monkeys learned 300 object-in-place scene discriminations across sessions. After RSC removal, one-trial postoperative retention tests revealed significant retrograde memory loss for these 300 discriminations relative to unoperated control monkeys. Less robust evidence was found for a deficit in anterograde memory (new postoperative learning) after RSC lesions as new learning to criterion measures failed to reveal any significant learning impairment. However, after achieving ≥90% learning criterion for the postoperatively presented novel 100 object-in-place scene discriminations, short-term retention (i.e., measured after 24 h delay) of this well-learnt set was impaired in the RSC monkeys relative to controls. A further experiment assessed rapid "within" session acquisition of novel object-in-place scene discriminations, again confirming that new learning per se was unimpaired by bilateral RSC removal. Primate RSC contributes critically to memory by supporting normal retention of information, even when this information does not involve an autobiographical component.


Assuntos
Giro do Cíngulo/fisiologia , Memória/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Animais , Aprendizagem por Discriminação/fisiologia , Discriminação Psicológica/fisiologia , Feminino , Macaca mulatta , Masculino , Testes Neuropsicológicos , Fatores de Tempo
11.
Cereb Cortex ; 25(11): 4519-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25979086

RESUMO

It is proposed that mediodorsal thalamus contributes to cognition via interactions with prefrontal cortex. However, there is relatively little evidence detailing the interactions between mediodorsal thalamus and prefrontal cortex linked to cognition in primates. This study investigated these interactions during learning, memory, and decision-making tasks in rhesus monkeys using a disconnection lesion approach. Preoperatively, monkeys learned object-in-place scene discriminations embedded within colorful visual backgrounds. Unilateral neurotoxic lesions to magnocellular mediodorsal thalamus (MDmc) impaired the ability to learn new object-in-place scene discriminations. In contrast, unilateral ablations to ventrolateral and orbital prefrontal cortex (PFv+o) left learning intact. A second unilateral MDmc or PFv+o lesion in the contralateral hemisphere to the first operation, causing functional MDmc-PFv+o disconnection across hemispheres, further impaired learning object-in-place scene discriminations, although object discrimination learning remained intact. Adaptive decision-making after reward satiety devaluation was also reduced. These data highlight the functional importance of interactions between MDmc and PFv+o during learning object-in-place scene discriminations and adaptive decision-making but not object discrimination learning. Moreover, learning deficits observed after unilateral removal of MDmc but not PFv+o provide direct behavioral evidence of the MDmc role influencing more widespread regions of the frontal lobes in cognition.


Assuntos
Cognição/fisiologia , Aprendizagem por Discriminação/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Animais , Mapeamento Encefálico , Tomada de Decisões/fisiologia , Feminino , Lateralidade Funcional , Macaca mulatta , Masculino , Testes Neuropsicológicos , Estimulação Luminosa , Reforço Psicológico
12.
Proc Natl Acad Sci U S A ; 110(34): 13982-7, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23924609

RESUMO

In the absence of external stimuli or task demands, correlations in spontaneous brain activity (functional connectivity) reflect patterns of anatomical connectivity. Hence, resting-state functional connectivity has been used as a proxy measure for structural connectivity and as a biomarker for brain changes in disease. To relate changes in functional connectivity to physiological changes in the brain, it is important to understand how correlations in functional connectivity depend on the physical integrity of brain tissue. The causal nature of this relationship has been called into question by patient data suggesting that decreased structural connectivity does not necessarily lead to decreased functional connectivity. Here we provide evidence for a causal but complex relationship between structural connectivity and functional connectivity: we tested interhemispheric functional connectivity before and after corpus callosum section in rhesus monkeys. We found that forebrain commissurotomy severely reduced interhemispheric functional connectivity, but surprisingly, this effect was greatly mitigated if the anterior commissure was left intact. Furthermore, intact structural connections increased their functional connectivity in line with the hypothesis that the inputs to each node are normalized. We conclude that functional connectivity is likely driven by corticocortical white matter connections but with complex network interactions such that a near-normal pattern of functional connectivity can be maintained by just a few indirect structural connections. These surprising results highlight the importance of network-level interactions in functional connectivity and may cast light on various paradoxical findings concerning changes in functional connectivity in disease states.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Conectoma , Macaca mulatta/fisiologia , Animais , Corpo Caloso/cirurgia , Feminino , Imageamento por Ressonância Magnética , Masculino , Fatores de Tempo
13.
Learn Mem ; 22(8): 354-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26179228

RESUMO

Recognition memory deficits, even after short delays, are sometimes observed following hippocampal damage. One hypothesis links the hippocampus with processes in updating contextual memory representation. Here, we used fornix transection, which partially disconnects the hippocampal system, and compares the performance of fornix-transected monkeys with normal monkeys on two versions of a delayed-matching-to-position task with short delays. Spatial recognition memory was affected by fornix transection only when the temporal structure of the task changed across trials, while differences in motor control, motivation, perception, or short-term memory were not critical. We attributed the deficit to a compromised ability in tracking changes in task temporal structure.


Assuntos
Adaptação Psicológica/fisiologia , Fórnice/fisiologia , Reconhecimento Psicológico/fisiologia , Memória Espacial/fisiologia , Percepção do Tempo/fisiologia , Análise de Variância , Animais , Fórnice/lesões , Macaca fascicularis , Macaca mulatta , Masculino , Memória de Curto Prazo/fisiologia , Motivação/fisiologia , Atividade Motora/fisiologia , Testes Neuropsicológicos , Tempo de Reação
14.
J Neurosci ; 34(46): 15340-6, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25392501

RESUMO

The main impetus for a mini-symposium on corticothalamic interrelationships was the recent number of studies highlighting the role of the thalamus in aspects of cognition beyond sensory processing. The thalamus contributes to a range of basic cognitive behaviors that include learning and memory, inhibitory control, decision-making, and the control of visual orienting responses. Its functions are deeply intertwined with those of the better studied cortex, although the principles governing its coordination with the cortex remain opaque, particularly in higher-level aspects of cognition. How should the thalamus be viewed in the context of the rest of the brain? Although its role extends well beyond relaying of sensory information from the periphery, the main function of many of its subdivisions does appear to be that of a relay station, transmitting neural signals primarily to the cerebral cortex from a number of brain areas. In cognition, its main contribution may thus be to coordinate signals between diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala, and striatum. This central coordination is further subject to considerable extrinsic control, for example, inhibition from the basal ganglia, zona incerta, and pretectal regions, and chemical modulation from ascending neurotransmitter systems. What follows is a brief review on the role of the thalamus in aspects of cognition and behavior, focusing on a summary of the topics covered in a mini-symposium held at the Society for Neuroscience meeting, 2014.


Assuntos
Comportamento/fisiologia , Cognição/fisiologia , Tálamo/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Humanos , Aprendizagem/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Tálamo/citologia
15.
J Neurophysiol ; 114(3): 1947-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26224780

RESUMO

It has been suggested that some cortically blind patients can process the emotional valence of visual stimuli via a fast, subcortical pathway from the superior colliculus (SC) that reaches the amygdala via the pulvinar. We provide in vivo evidence for connectivity between the SC and the amygdala via the pulvinar in both humans and rhesus macaques. Probabilistic diffusion tensor imaging tractography revealed a streamlined path that passes dorsolaterally through the pulvinar before arcing rostrally to traverse above the temporal horn of the lateral ventricle and connect to the lateral amygdala. To obviate artifactual connectivity with crossing fibers of the stria terminalis, the stria was also dissected. The putative streamline between the SC and amygdala traverses above the temporal horn dorsal to the stria terminalis and is positioned medial to it in humans and lateral to it in monkeys. The topography of the streamline was examined in relation to lesion anatomy in five patients who had previously participated in behavioral experiments studying the processing of emotionally valenced visual stimuli. The pulvinar lesion interrupted the streamline in two patients who had exhibited contralesional processing deficits and spared the streamline in three patients who had no deficit. Although not definitive, this evidence supports the existence of a subcortical pathway linking the SC with the amygdala in primates. It also provides a necessary bridge between behavioral data obtained in future studies of neurological patients, and any forthcoming evidence from more invasive techniques, such as anatomical tracing studies and electrophysiological investigations only possible in nonhuman species.


Assuntos
Tonsila do Cerebelo/fisiologia , Cegueira Cortical/fisiopatologia , Conectoma , Colículos Superiores/fisiologia , Percepção Visual , Tonsila do Cerebelo/fisiopatologia , Animais , Estudos de Casos e Controles , Imagem de Tensor de Difusão , Feminino , Humanos , Macaca mulatta , Masculino , Pulvinar/fisiologia , Pulvinar/fisiopatologia , Colículos Superiores/fisiopatologia , Adulto Jovem
16.
Cell Rep ; 43(6): 114355, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870010

RESUMO

Beliefs-attitudes toward some state of the environment-guide action selection and should be robust to variability but sensitive to meaningful change. Beliefs about volatility (expectation of change) are associated with paranoia in humans, but the brain regions responsible for volatility beliefs remain unknown. The orbitofrontal cortex (OFC) is central to adaptive behavior, whereas the magnocellular mediodorsal thalamus (MDmc) is essential for arbitrating between perceptions and action policies. We assessed belief updating in a three-choice probabilistic reversal learning task following excitotoxic lesions of the MDmc (n = 3) or OFC (n = 3) and compared performance with that of unoperated monkeys (n = 14). Computational analyses indicated a double dissociation: MDmc, but not OFC, lesions were associated with erratic switching behavior and heightened volatility belief (as in paranoia in humans), whereas OFC, but not MDmc, lesions were associated with increased lose-stay behavior and reward learning rates. Given the consilience across species and models, these results have implications for understanding paranoia.


Assuntos
Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/patologia , Masculino , Transtornos Paranoides , Macaca mulatta , Humanos , Tálamo/patologia , Recompensa , Feminino , Cultura
17.
iScience ; 26(7): 106993, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37448560

RESUMO

The thalamus and cortex are anatomically interconnected, with the thalamus providing integral information for cortical functions. The anteroventral thalamic nucleus (AV) is reciprocally connected to retrosplenial cortex (RSC). Two distinct AV subfields, dorsomedial (AVDM) and ventrolateral (AVVL), project differentially to granular vs. dysgranular RSC, respectively. To probe if functional responses of AV neurons differ, we recorded single neurons and local field potentials from AVDM and AVVL in rats during foraging. We observed place cells (neurons modulated by spatial location) in both AVDM and AVVL. Additionally, we characterized neurons modulated by theta oscillations, heading direction, and a conjunction of these. Place cells and conjunctive Theta-by-Head direction cells were more prevalent in AVVL; more non-conjunctive theta and directional neurons were prevalent in AVDM. These findings add further evidence that there are two thalamocortical circuits connecting AV and RSC, and reveal that the signaling involves place information in addition to direction and theta.

18.
Curr Res Neurobiol ; 4: 100064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36582401

RESUMO

Future neuroscience and biomedical projects involving non-human primates (NHPs) remain essential in our endeavors to understand the complexities and functioning of the mammalian central nervous system. In so doing, the NHP neuroscience researcher must be allowed to incorporate state-of-the-art technologies, including the use of novel viral vectors, gene therapy and transgenic approaches to answer continuing and emerging research questions that can only be addressed in NHP research models. This perspective piece captures these emerging technologies and some specific research questions they can address. At the same time, we highlight some current caveats to global NHP research and collaborations including the lack of common ethical and regulatory frameworks for NHP research, the limitations involving animal transportation and exports, and the ongoing influence of activist groups opposed to NHP research.

19.
Comp Med ; 73(3): 216-228, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37208151

RESUMO

Our goal in this manuscript is to advance the assessment and treatment of monkey species in neuroscience research. We hope to begin a discussion and establish baseline data on how complications are identified and treated. We surveyed the neuroscience research community working with monkeys and compiled responses to questions about investigator demographics, assessment of animal wellbeing, treatment choices, and approaches to mitigate risks associated with CNS procedures and promote monkey health and wellbeing. The majority of the respondents had worked with nonhuman primates (NHP) for over 15 y. Identification of procedure-related complications and efficacy of treatment generally rely on common behavioral indices. Treatments for localized inflammatory responses are generally successful, whereas the treatment success for meningitis or meningoencephalitis, abscesses, and hemorrhagic stroke are less successful. Behavioral signs of pain are treated successfully with NSAIDs and opioids. Our future plans are to collate treatment protocols and develop best practices that can be shared across the neuroscience community to improve treatment success rates and animal welfare and therefore science. Human protocols can be used to develop best practices, assess outcomes, and promote further refinements in treatment practices for monkeys to enhance research outcomes.


Assuntos
Bem-Estar do Animal , Humanos , Animais , Haplorrinos
20.
Sci Rep ; 13(1): 16913, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805650

RESUMO

The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit-the central automatic network-responsible for the modulation of cardiovascular output. The mediodorsal thalamus (MD) is involved in higher cognitive processes and is also known to be connected to some of the key neural structures that regulate cardiovascular function. However, it is unclear whether the MD has any role in this circuitry. Here, we show that discrete manipulations (microstimulation during anaesthetized functional neuroimaging or localized cytotoxin infusions) to either the magnocellular or the parvocellular MD subdivisions led to observable and variable changes in the heart rate of female and male rhesus macaque monkeys. Considering the central positions that these two MD subdivisions have in frontal cortico-thalamocortical circuits, our findings suggest that MD contributions to autonomic regulation may interact with its identified role in higher cognitive processes, representing an important physiological link between cognition and emotion.


Assuntos
Cognição , Tálamo , Animais , Masculino , Feminino , Macaca mulatta , Cognição/fisiologia , Encéfalo , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA