Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biophys J ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297834

RESUMO

De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the ß-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of ß hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial ß-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.

2.
Biophys J ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751115

RESUMO

The precise prediction of major histocompatibility complex (MHC)-peptide complex structures is pivotal for understanding cellular immune responses and advancing vaccine design. In this study, we enhanced AlphaFold's capabilities by fine-tuning it with a specialized dataset consisting of exclusively high-resolution class I MHC-peptide crystal structures. This tailored approach aimed to address the generalist nature of AlphaFold's original training, which, while broad-ranging, lacked the granularity necessary for the high-precision demands of class I MHC-peptide interaction prediction. A comparative analysis was conducted against the homology-modeling-based method Pandora as well as the AlphaFold multimer model. Our results demonstrate that our fine-tuned model outperforms others in terms of root-mean-square deviation (median value for Cα atoms for peptides is 0.66 Å) and also provides enhanced predicted local distance difference test scores, offering a more reliable assessment of the predicted structures. These advances have substantial implications for computational immunology, potentially accelerating the development of novel therapeutics and vaccines by providing a more precise computational lens through which to view MHC-peptide interactions.

3.
Bioinformatics ; 38(12): 3297-3298, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35512391

RESUMO

SUMMARY: Easy-to-use, open-source, general-purpose programs for modeling a protein structure from inter-atomic distances are needed for modeling from experimental data and refinement of predicted protein structures. OpenMDlr is an open-source Python package for modeling protein structures from pairwise distances between any atoms, and optionally, dihedral angles. We provide a user-friendly input format for harnessing modern biomolecular force fields in an easy-to-install package that can efficiently make use of multiple compute cores. AVAILABILITY AND IMPLEMENTATION: OpenMDlr is available at https://github.com/BSDExabio/OpenMDlr-amber. The package is written in Python (versions 3.x). All dependencies are open-source and can be installed with the Conda package management system. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Proteínas , Software
4.
J Chem Inf Model ; 62(15): 3627-3637, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35868851

RESUMO

Fibroblast growth factor 23 (FGF23) is a therapeutic target for treating hereditary and acquired hypophosphatemic disorders, such as X-linked hypophosphatemic (XLH) rickets and tumor-induced osteomalacia (TIO), respectively. FGF23-induced hypophosphatemia is mediated by signaling through a ternary complex formed by FGF23, the FGF receptor (FGFR), and α-Klotho. Currently, disorders of excess FGF23 are treated with an FGF23-blocking antibody, burosumab. Small-molecule drugs that disrupt protein/protein interactions necessary for the ternary complex formation offer an alternative to disrupting FGF23 signaling. In this study, the FGF23:α-Klotho interface was targeted to identify small-molecule protein/protein interaction inhibitors since it was computationally predicted to have a large fraction of hot spots and two druggable residues on α-Klotho. We further identified Tyr433 on the KL1 domain of α-Klotho as a promising hot spot and α-Klotho as an appropriate drug-binding target at this interface. Subsequently, we performed in silico docking of ∼5.5 million compounds from the ZINC database to the interface region of α-Klotho from the ternary crystal structure. Following docking, 24 and 20 compounds were in the final list based on the lowest binding free energies to α-Klotho and the largest number of contacts with Tyr433, respectively. Five compounds were assessed experimentally by their FGF23-mediated extracellular signal-regulated kinase (ERK) activities in vitro, and two of these reduced activities significantly. Both these compounds were predicted to have favorable binding affinities to α-Klotho but not have a large number of contacts with the hot spot Tyr433. ZINC12409120 was found experimentally to disrupt FGF23:α-Klotho interaction to reduce FGF23-mediated ERK activities by 70% and have a half maximal inhibitory concentration (IC50) of 5.0 ± 0.23 µM. Molecular dynamics (MD) simulations of the ZINC12409120:α-Klotho complex starting from in silico docking poses reveal that the ligand exhibits contacts with residues on the KL1 domain, the KL1-KL2 linker, and the KL2 domain of α-Klotho simultaneously, thereby possibly disrupting the regular function of α-Klotho and impeding FGF23:α-Klotho interaction. ZINC12409120 is a candidate for lead optimization.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Hipofosfatemia , Fator de Crescimento de Fibroblastos 23/antagonistas & inibidores , Humanos , Hipofosfatemia/tratamento farmacológico , Hipofosfatemia/metabolismo , Proteínas Klotho , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
5.
J Immunol ; 205(7): 1962-1977, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878910

RESUMO

The reliable prediction of the affinity of candidate peptides for the MHC is important for predicting their potential antigenicity and thus influences medical applications, such as decisions on their inclusion in T cell-based vaccines. In this study, we present a rapid, predictive computational approach that combines a popular, sequence-based artificial neural network method, NetMHCpan 4.0, with three-dimensional structural modeling. We find that the ensembles of bound peptide conformations generated by the programs MODELLER and Rosetta FlexPepDock are less variable in geometry for strong binders than for low-affinity peptides. In tests on 1271 peptide sequences for which the experimental dissociation constants of binding to the well-characterized murine MHC allele H-2Db are known, by applying thresholds for geometric fluctuations the structure-based approach in a standalone manner drastically improves the statistical specificity, reducing the number of false positives. Furthermore, filtering candidates generated with NetMHCpan 4.0 with the structure-based predictor led to an increase in the positive predictive value (PPV) of the peptides correctly predicted to bind very strongly (i.e., K d < 100 nM) from 40 to 52% (p = 0.027). The combined method also significantly improved the PPV when tested on five human alleles, including some with limited data for training. Overall, an average increase of 10% in the PPV was found over the standalone sequence-based method. The combined method should be useful in the rapid design of effective T cell-based vaccines.


Assuntos
Antígenos/metabolismo , Antígeno de Histocompatibilidade H-2D/metabolismo , Peptídeos/metabolismo , Algoritmos , Animais , Antígenos/química , Antígenos/imunologia , Inteligência Artificial , Biologia Computacional , Cristalografia por Raios X , Antígeno de Histocompatibilidade H-2D/química , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Peptídeos/química , Peptídeos/imunologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
7.
BMC Bioinformatics ; 21(1): 289, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32631222

RESUMO

BACKGROUND: The interaction between proteins and nucleic acids plays pivotal roles in various biological processes such as transcription, translation, and gene regulation. Hot spots are a small set of residues that contribute most to the binding affinity of a protein-nucleic acid interaction. Compared to the extensive studies of the hot spots on protein-protein interfaces, the hot spot residues within protein-nucleic acids interfaces remain less well-studied, in part because mutagenesis data for protein-nucleic acids interaction are not as abundant as that for protein-protein interactions. RESULTS: In this study, we built a new computational model, iPNHOT, to effectively predict hot spot residues on protein-nucleic acids interfaces. One training data set and an independent test set were collected from dbAMEPNI and some recent literature, respectively. To build our model, we generated 97 different sequential and structural features and used a two-step strategy to select the relevant features. The final model was built based only on 7 features using a support vector machine (SVM). The features include two unique features such as ∆SASsa1/2 and esp3, which are newly proposed in this study. Based on the cross validation results, our model gave F1 score and AUROC as 0.725 and 0.807 on the subset collected from ProNIT, respectively, compared to 0.407 and 0.670 of mCSM-NA, a state-of-the art model to predict the thermodynamic effects of protein-nucleic acid interaction. The iPNHOT model was further tested on the independent test set, which showed that our model outperformed other methods. CONCLUSION: In this study, by collecting data from a recently published database dbAMEPNI, we proposed a new model, iPNHOT, to predict hotspots on both protein-DNA and protein-RNA interfaces. The results show that our model outperforms the existing state-of-art models. Our model is available for users through a webserver: http://zhulab.ahu.edu.cn/iPNHOT/ .


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Humanos
8.
PLoS Comput Biol ; 15(8): e1006813, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381559

RESUMO

Prediction of compounds that are active against a desired biological target is a common step in drug discovery efforts. Virtual screening methods seek some active-enriched fraction of a library for experimental testing. Where data are too scarce to train supervised learning models for compound prioritization, initial screening must provide the necessary data. Commonly, such an initial library is selected on the basis of chemical diversity by some pseudo-random process (for example, the first few plates of a larger library) or by selecting an entire smaller library. These approaches may not produce a sufficient number or diversity of actives. An alternative approach is to select an informer set of screening compounds on the basis of chemogenomic information from previous testing of compounds against a large number of targets. We compare different ways of using chemogenomic data to choose a small informer set of compounds based on previously measured bioactivity data. We develop this Informer-Based-Ranking (IBR) approach using the Published Kinase Inhibitor Sets (PKIS) as the chemogenomic data to select the informer sets. We test the informer compounds on a target that is not part of the chemogenomic data, then predict the activity of the remaining compounds based on the experimental informer data and the chemogenomic data. Through new chemical screening experiments, we demonstrate the utility of IBR strategies in a prospective test on three kinase targets not included in the PKIS.


Assuntos
Descoberta de Drogas/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quimioinformática/métodos , Quimioinformática/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Bases de Dados de Compostos Químicos , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/estatística & dados numéricos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/estatística & dados numéricos , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/estatística & dados numéricos , Humanos , Estudos Prospectivos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas de Protozoários , Relação Estrutura-Atividade , Interface Usuário-Computador , Proteínas Virais/antagonistas & inibidores
9.
Bioinformatics ; 32(18): 2853-5, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27259543

RESUMO

UNLABELLED: : Protein-nucleic acid interactions are among the most important intermolecular interactions in the regulation of cellular events. Identifying residues involved in these interactions from protein structure alone is an important challenge. Here we introduce the webserver interface to DNA Binding Site Identifier (DBSI), a powerful structure-based SVM model for the prediction and visualization of DNA binding sites on protein structures. DBSI has been shown to be a top-performing model to predict DNA binding sites on the surface of a protein or peptide and shows promise in predicting RNA binding sites. AVAILABILITY AND IMPLEMENTATION: Server is available at http://dbsi.mitchell-lab.org CONTACT: jcmitchell@wisc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ligação Proteica , Conformação Proteica , Sítios de Ligação , DNA , Proteínas de Ligação a DNA , Modelos Moleculares , Proteínas , Máquina de Vetores de Suporte
10.
Proc Natl Acad Sci U S A ; 111(44): E4697-705, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25339443

RESUMO

Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1-9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ubiquinona/biossíntese , Animais , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Proteínas Mitocondriais/genética , Oxigenases de Função Mista , Estrutura Terciária de Proteína , Ubiquinona/genética
11.
Dent Update ; 43(6): 545-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29148648

RESUMO

Isolated bilateral macrodontia of the mandibular second premolars is a rare condition. We believe that the case reported here is the first in which isolated bilateral macrodontia of the mandibular second premolars presents with numerous dental anomalies affecting other teeth. A 14-year-old boy was referred to the Paediatric Dental Department of King's College Hospital with a partially erupted mandibular left second premolar. Clinical and radiographic examination subsequently revealed macrodontia of both mandibular second premolar teeth and multiple other dental anomalies. This report discusses the presentation and multidisciplinary management of this case. Clinical relevance: This case report describes an already rare condition made even more extraordinary owing to its presentation with multiple other dental anomalies.


Assuntos
Anormalidades Dentárias , Adolescente , Humanos , Masculino , Anormalidades Dentárias/diagnóstico , Anormalidades Dentárias/cirurgia , Extração Dentária
12.
Proteins ; 83(11): 1940-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25740680

RESUMO

Proteins are essential elements of biological systems, and their function typically relies on their ability to successfully bind to specific partners. Recently, an emphasis of study into protein interactions has been on hot spots, or residues in the binding interface that make a significant contribution to the binding energetics. In this study, we investigate how conservation of hot spots can be used to guide docking prediction. We show that the use of evolutionary data combined with hot spot prediction highlights near-native structures across a range of benchmark examples. Our approach explores various strategies for using hot spots and evolutionary data to score protein complexes, using both absolute and chemical definitions of conservation along with refinements to these strategies that look at windowed conservation and filtering to ensure a minimum number of hot spots in each binding partner. Finally, structure-based models of orthologs were generated for comparison with sequence-based scoring. Using two data sets of 22 and 85 examples, a high rate of top 10 and top 1 predictions are observed, with up to 82% of examples returning a top 10 hit and 35% returning top 1 hit depending on the data set and strategy applied; upon inclusion of the native structure among the decoys, up to 55% of examples yielded a top 1 hit. The 20 common examples between data sets show that more carefully curated interolog data yields better predictions, particularly in achieving top 1 hits. Proteins 2015; 83:1940-1946. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.


Assuntos
Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Bases de Dados de Proteínas , Evolução Molecular , Simulação de Acoplamento Molecular
13.
Nucleic Acids Res ; 41(16): e160, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23873960

RESUMO

In this study, we present the DNA-Binding Site Identifier (DBSI), a new structure-based method for predicting protein interaction sites for DNA binding. DBSI was trained and validated on a data set of 263 proteins (TRAIN-263), tested on an independent set of protein-DNA complexes (TEST-206) and data sets of 29 unbound (APO-29) and 30 bound (HOLO-30) protein structures distinct from the training data. We computed 480 candidate features for identifying protein residues that bind DNA, including new features that capture the electrostatic microenvironment within shells near the protein surface. Our iterative feature selection process identified features important in other models, as well as features unique to the DBSI model, such as a banded electrostatic feature with spatial separation comparable with the canonical width of the DNA minor groove. Validations and comparisons with established methods using a range of performance metrics clearly demonstrate the predictive advantage of DBSI, and its comparable performance on unbound (APO-29) and bound (HOLO-30) conformations demonstrates robustness to binding-induced protein conformational changes. Finally, we offer our feature data table to others for integration into their own models or for testing improved feature selection and model training strategies based on DBSI.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Máquina de Vetores de Suporte , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Eletricidade Estática
14.
Proteins ; 82(4): 620-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24155158

RESUMO

We report the first assessment of blind predictions of water positions at protein-protein interfaces, performed as part of the critical assessment of predicted interactions (CAPRI) community-wide experiment. Groups submitting docking predictions for the complex of the DNase domain of colicin E2 and Im2 immunity protein (CAPRI Target 47), were invited to predict the positions of interfacial water molecules using the method of their choice. The predictions-20 groups submitted a total of 195 models-were assessed by measuring the recall fraction of water-mediated protein contacts. Of the 176 high- or medium-quality docking models-a very good docking performance per se-only 44% had a recall fraction above 0.3, and a mere 6% above 0.5. The actual water positions were in general predicted to an accuracy level no better than 1.5 Å, and even in good models about half of the contacts represented false positives. This notwithstanding, three hotspot interface water positions were quite well predicted, and so was one of the water positions that is believed to stabilize the loop that confers specificity in these complexes. Overall the best interface water predictions was achieved by groups that also produced high-quality docking models, indicating that accurate modelling of the protein portion is a determinant factor. The use of established molecular mechanics force fields, coupled to sampling and optimization procedures also seemed to confer an advantage. Insights gained from this analysis should help improve the prediction of protein-water interactions and their role in stabilizing protein complexes.


Assuntos
Colicinas/química , Mapeamento de Interação de Proteínas , Água/química , Algoritmos , Biologia Computacional , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica
15.
Proteins ; 81(11): 1919-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23760773

RESUMO

Protein-protein interactions are a fundamental aspect of many biological processes. The advent of recombinant protein and computational techniques has allowed for the rational design of proteins with novel binding capabilities. It is therefore desirable to predict which designed proteins are capable of binding in vitro. To this end, we have developed a learned classification model that combines energetic and non-energetic features. Our feature set is adapted from specialized potentials for aromatic interactions, hydrogen bonds, electrostatics, shape, and desolvation. A binding model built on these features was initially developed for CAPRI Round 21, achieving top results in the independent assessment. Here, we present a more thoroughly trained and validated model, and compare various support-vector machine kernels. The Gaussian kernel model classified both high-resolution complexes and designed nonbinders with 79-86% accuracy on independent test data. We also observe that multiple physical potentials for dielectric-dependent electrostatics and hydrogen bonding contribute to the enhanced predictive accuracy, suggesting that their combined information is much greater than that of any single energetics model. We also study the change in predictive performance as the model features or training data are varied, observing unusual patterns of prediction in designed interfaces as compared with other data types.


Assuntos
Modelos Teóricos , Proteínas/química , Algoritmos , Ligação Proteica , Software
16.
Proteins ; 81(12): 2221-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038640

RESUMO

We describe methods and results for four new types of challenge in the Critical Assessment of PRedicted Interactions (CAPRI). Two new challenges asked predictors to create models related to protein interface design. The first of these was to distinguish binding interfaces from designed nonbinding interfaces. The second was to predict the effects of all single-point mutations on hemagglutinin binding to two small designed proteins. Two additional challenges asked predictors to submit high-resolution structures for interface-bound crystallographic waters and for binding heparin to a putative glycosylase.


Assuntos
Hemaglutininas/química , Simulação de Acoplamento Molecular , Mapas de Interação de Proteínas , Software , Algoritmos , Inteligência Artificial , Cristalografia por Raios X , Heparina/química , Modelos Moleculares , Mutagênese , Mutação Puntual , Ligação Proteica , Conformação Proteica , Água/química
17.
Proteins ; 81(11): 1980-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23843247

RESUMO

Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing. The most successful methods explicitly considered the effects of mutation on monomer stability in addition to binding affinity, carried out explicit side-chain sampling and backbone relaxation, evaluated packing, electrostatic, and solvation effects, and correctly identified around a third of the beneficial mutations. Much room for improvement remains for even the best techniques, and large-scale fitness landscapes should continue to provide an excellent test bed for continued evaluation of both existing and new prediction methodologies.


Assuntos
Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas , Algoritmos , Mutação , Ligação Proteica
18.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38077000

RESUMO

The precise prediction of Major Histocompatibility Complex (MHC)-peptide complex structures is pivotal for understanding cellular immune responses and advancing vaccine design. In this study, we enhanced AlphaFold's capabilities by fine-tuning it with a specialized dataset comprised by exclusively high-resolution MHC-peptide crystal structures. This tailored approach aimed to address the generalist nature of AlphaFold's original training, which, while broad-ranging, lacked the granularity necessary for the high-precision demands of MHC-peptide interaction prediction. A comparative analysis was conducted against the homology-modeling-based method Pandora [13], as well as the AlphaFold multimer model [8]. Our results demonstrate that our fine-tuned model outperforms both in terms of RMSD (median value is 0.65 Å) but also provides enhanced predicted lDDT scores, offering a more reliable assessment of the predicted structures. These advances have substantial implications for computational immunology, potentially accelerating the development of novel therapeutics and vaccines by providing a more precise computational lens through which to view MHC-peptide interactions.

19.
Proteins ; 80(7): 1766-79, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22434479

RESUMO

Normal mode analysis has emerged as a useful technique for investigating protein motions on long time scales. This is largely due to the advent of coarse-graining techniques, particularly Hooke's Law-based potentials and the rotational-translational blocking (RTB) method for reducing the size of the force-constant matrix, the Hessian. Here we present a new method for domain decomposition for use in RTB that is based on hierarchical clustering of atomic density gradients, which we call Density-Cluster RTB (DCRTB). The method reduces the number of degrees of freedom by 85-90% compared with the standard blocking approaches. We compared the normal modes from DCRTB against standard RTB using 1-4 residues in sequence in a single block, with good agreement between the two methods. We also show that Density-Cluster RTB and standard RTB perform well in capturing the experimentally determined direction of conformational change. Significantly, we report superior correlation of DCRTB with B-factors compared with 1-4 residue per block RTB. Finally, we show significant reduction in computational cost for Density-Cluster RTB that is nearly 100-fold for many examples.


Assuntos
Modelos Químicos , Proteínas/química , Análise por Conglomerados , Biologia Computacional , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína
20.
Nucleic Acids Res ; 38(Web Server issue): W321-5, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20529880

RESUMO

chipD is a web server that facilitates design of DNA oligonucleotide probes for high-density tiling arrays, which can be used in a number of genomic applications such as ChIP-chip or gene-expression profiling. The server implements a probe selection algorithm that takes as an input, in addition to the target sequences, a set of parameters that allow probe design to be tailored to specific applications, protocols or the array manufacturer's requirements. The algorithm optimizes probes to meet three objectives: (i) probes should be specific; (ii) probes should have similar thermodynamic properties; and (iii) the target sequence coverage should be homogeneous and avoid significant gaps. The output provides in a text format, the list of probe sequences with their genomic locations, targeted strands and hybridization characteristics. chipD has been used successfully to design tiling arrays for bacteria and yeast. chipD is available at http://chipd.uwbacter.org/.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos , Sondas de Oligonucleotídeos/química , Software , Algoritmos , Perfilação da Expressão Gênica , Internet , Rhodobacter sphaeroides/genética , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA