Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Nat Immunol ; 24(5): 855-868, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012543

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a global cause of death. Granuloma-associated lymphoid tissue (GrALT) correlates with protection during TB, but the mechanisms of protection are not understood. During TB, the transcription factor IRF4 in T cells but not B cells is required for the generation of the TH1 and TH17 subsets of helper T cells and follicular helper T (TFH)-like cellular responses. A population of IRF4+ T cells coexpress the transcription factor BCL6 during Mtb infection, and deletion of Bcl6 (Bcl6fl/fl) in CD4+ T cells (CD4cre) resulted in reduction of TFH-like cells, impaired localization within GrALT and increased Mtb burden. In contrast, the absence of germinal center B cells, MHC class II expression on B cells, antibody-producing plasma cells or interleukin-10-expressing B cells, did not increase Mtb susceptibility. Indeed, antigen-specific B cells enhance cytokine production and strategically localize TFH-like cells within GrALT via interactions between programmed cell death 1 (PD-1) and its ligand PD-L1 and mediate Mtb control in both mice and macaques.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Linfócitos T Auxiliares-Indutores , Linfócitos B , Tecido Linfoide , Centro Germinativo , Fatores de Transcrição
2.
Cell ; 158(6): 1402-1414, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215495

RESUMO

In complex biological systems, small molecules often mediate microbe-microbe and microbe-host interactions. Using a systematic approach, we identified 3,118 small-molecule biosynthetic gene clusters (BGCs) in genomes of human-associated bacteria and studied their representation in 752 metagenomic samples from the NIH Human Microbiome Project. Remarkably, we discovered that BGCs for a class of antibiotics in clinical trials, thiopeptides, are widely distributed in genomes and metagenomes of the human microbiota. We purified and solved the structure of a thiopeptide antibiotic, lactocillin, from a prominent member of the vaginal microbiota. We demonstrate that lactocillin has potent antibacterial activity against a range of Gram-positive vaginal pathogens, and we show that lactocillin and other thiopeptide BGCs are expressed in vivo by analyzing human metatranscriptomic sequencing data. Our findings illustrate the widespread distribution of small-molecule-encoding BGCs in the human microbiome, and they demonstrate the bacterial production of drug-like molecules in humans. PAPERCLIP:


Assuntos
Bactérias/química , Bactérias/genética , Metagenômica/métodos , Microbiota , Sequência de Aminoácidos , Bactérias/classificação , Bactérias/metabolismo , Vias Biossintéticas , Trato Gastrointestinal/microbiologia , Humanos , Dados de Sequência Molecular , Boca/microbiologia , Família Multigênica , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Policetídeos/análise
3.
Mol Cell Proteomics ; 22(1): 100454, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435333

RESUMO

Onchocerca volvulus, the causative agent of onchocerciasis, infects over 20 million people and can cause severe dermatitis and ocular conditions including blindness. Current treatments employed in mass drug administration programs do not kill adult female worms, and common diagnostic tests cannot reliably assess viability of adult worms. There is an urgent need for better diagnostic tests to facilitate monitoring the efficacy of new treatments and disease elimination efforts. Here, eight plasma samples collected from individuals infected with O. volvulus and seven from uninfected individuals were analyzed by MS/MS spectrometry to directly identify O. volvulus proteins present in infected but absent in uninfected control samples. This direct proteomic approach for biomarker discovery had not been previously employed for onchocerciasis. Among all detected proteins, 19 biomarker candidates were supported by two or more unique peptides, identified in the plasma of at least three O. volvulus-infected human samples and absent in all control samples. Comprehensive analysis and ranking of these candidates included detailed functional annotation and a review of RNA-seq gene expression profiles. Isotope-labeled standard peptides were run in parallel and validated MS/MS peptide identifications for 15 peptides from 11 of the 19 proteins, and two infected urine and one uninfected urine sample was used for additional validation. A major antigen/OVOC11613 was identified as the most promising candidate with eight unique peptides across five plasma samples and one urine sample. Additional strong candidates included OVOC1523/ATP synthase, OVOC247/laminin and OVOC11626/PLK5, and along with OVOC11613, and were also detected in urine samples from onchocerciasis patients. This study has identified a promising novel set of proteins that will be carried forward to develop assays that can be used for diagnosis of O. volvulus infections and for monitoring treatment efficacy.


Assuntos
Volvo Intestinal , Oncocercose , Humanos , Biomarcadores , Oncocercose/diagnóstico , Proteômica , Espectrometria de Massas em Tandem
4.
Proc Natl Acad Sci U S A ; 119(36): e2202795119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037362

RESUMO

Parasitic helminth infections, while a major cause of neglected tropical disease burden, negatively correlate with the incidence of immune-mediated inflammatory diseases such as inflammatory bowel diseases (IBD). To evade expulsion, helminths have developed sophisticated mechanisms to regulate their host's immune responses. Controlled experimental human helminth infections have been assessed clinically for treating inflammatory conditions; however, such a radical therapeutic modality has challenges. An alternative approach is to harness the immunomodulatory properties within the worm's excretory-secretory (ES) complement, its secretome. Here, we report a biologics discovery and validation pipeline to generate and screen in vivo a recombinant cell-free secretome library of helminth-derived immunomodulatory proteins. We successfully expressed 78 recombinant ES proteins from gastrointestinal hookworms and screened the crude in vitro translation reactions for anti-IBD properties in a mouse model of acute colitis. After statistical filtering and ranking, 20 proteins conferred significant protection against various parameters of colitis. Lead candidates from distinct protein families, including annexins, transthyretins, nematode-specific retinol-binding proteins, and SCP/TAPS were identified. Representative proteins were produced in mammalian cells and further validated, including ex vivo suppression of inflammatory cytokine secretion by T cells from IBD patient colon biopsies. Proteins identified herein offer promise as novel, safe, and mechanistically differentiated biologics for treating the globally increasing burden of inflammatory diseases.


Assuntos
Anti-Inflamatórios , Produtos Biológicos , Colite , Proteínas de Helminto , Doenças Inflamatórias Intestinais , Animais , Anti-Inflamatórios/farmacologia , Produtos Biológicos/farmacologia , Colite/tratamento farmacológico , Proteínas de Helminto/genética , Proteínas de Helminto/farmacologia , Helmintos , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/parasitologia , Camundongos
5.
J Infect Dis ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324907

RESUMO

Early innate immune responses play an important role in determining the protective outcome of Mycobacterium tuberculosis (Mtb) infection. Nuclear factor kappa B (NF-κB) signaling in immune cells regulates the expression of key downstream effector molecules that mount early anti-mycobacterial responses. Using conditional knockout mice, we studied the effect of abrogation of NF-κB signaling in different myeloid cell types and its impact on Mtb infection. Our results show that absence of IKK2-mediated signaling in all myeloid cells resulted in increased susceptibility to Mtb infection. In contrast, absence of IKK2-mediated signaling specifically in CD11c+ myeloid cells induced early pro-inflammatory cytokine responses, enhanced the recruitment of myeloid cells and mediated early resistance to Mtb. Abrogation of IKK2 in MRP8-expressing neutrophils did not impact either disease pathology or Mtb control. Thus, we describe an early immunoregulatory role for NF-κB signaling in CD11c-expressing phagocytes, and a later protective role for NF-κB in LysM-expressing cells during Mtb infection.

6.
BMC Genomics ; 25(1): 341, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575858

RESUMO

BACKGROUND: Parasitic nematodes, significant pathogens for humans, animals, and plants, depend on diverse organ systems for intra-host survival. Understanding the cellular diversity and molecular variations underlying these functions holds promise for developing novel therapeutics, with specific emphasis on the neuromuscular system's functional diversity. The nematode intestine, crucial for anthelmintic therapies, exhibits diverse cellular phenotypes, and unraveling this diversity at the single-cell level is essential for advancing knowledge in anthelmintic research across various organ systems. RESULTS: Here, using novel single-cell transcriptomics datasets, we delineate cellular diversity within the intestine of adult female Ascaris suum, a parasitic nematode species that infects animals and people. Gene transcripts expressed in individual nuclei of untreated intestinal cells resolved three phenotypic clusters, while lower stringency resolved additional subclusters and more potential diversity. Clusters 1 and 3 phenotypes displayed variable congruence with scRNA phenotypes of C. elegans intestinal cells, whereas the A. suum cluster 2 phenotype was markedly unique. Distinct functional pathway enrichment characterized each A. suum intestinal cell cluster. Cluster 2 was distinctly enriched for Clade III-associated genes, suggesting it evolved within clade III nematodes. Clusters also demonstrated differential transcriptional responsiveness to nematode intestinal toxic treatments, with Cluster 2 displaying the least responses to short-term intra-pseudocoelomic nematode intestinal toxin treatments. CONCLUSIONS: This investigation presents advances in knowledge related to biological differences among major cell populations of adult A. suum intestinal cells. For the first time, diverse nematode intestinal cell populations were characterized, and associated biological markers of these cells were identified to support tracking of constituent cells under experimental conditions. These advances will promote better understanding of this and other parasitic nematodes of global importance, and will help to guide future anthelmintic treatments.


Assuntos
Anti-Helmínticos , Nematoides , Humanos , Animais , Caenorhabditis elegans , Intestinos , Nematoides/genética , Perfilação da Expressão Gênica , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
7.
Parasitology ; 151(3): 271-281, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163962

RESUMO

Parasitic gastrointestinal nematodes pose significant health risks to humans, livestock, and companion animals, and their control relies heavily on the use of anthelmintic drugs. Overuse of these drugs has led to the emergence of resistant nematode populations. Herein, a naturally occurring isolate (referred to as BCR) of the dog hookworm, Ancylostoma caninum, that is resistant to 3 major classes of anthelmintics is characterized. Various drug assays were used to determine the resistance of BCR to thiabendazole, ivermectin, moxidectin and pyrantel pamoate. When compared to a drug-susceptible isolate of A. caninum, BCR was shown to be significantly resistant to all 4 of the drugs tested. Multiple single nucleotide polymorphisms have been shown to impart benzimidazole resistance, including the F167Y mutation in the ß-tubulin isotype 1 gene, which was confirmed to be present in BCR through molecular analysis. The frequency of the resistant allele in BCR was 76.3% following its first passage in the lab, which represented an increase from approximately 50% in the founding hookworm population. A second, recently described mutation in codon 134 (Q134H) was also detected at lower frequency in the BCR population. Additionally, BCR exhibits an altered larval activation phenotype compared to the susceptible isolate, suggesting differences in the signalling pathways involved in the activation process which may be associated with resistance. Further characterization of this isolate will provide insights into the mechanisms of resistance to macrocyclic lactones and tetrahydropyrimidine anthelmintics.


Assuntos
Ancylostoma , Anti-Helmínticos , Humanos , Cães , Animais , Ancylostoma/genética , Ancylostomatoidea , Larva/genética , Anti-Helmínticos/farmacologia , Resistência a Múltiplos Medicamentos/genética , Resistência a Medicamentos/genética
8.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431694

RESUMO

Plasmacytoid dendritic cells (pDCs) specialize in the production of type I IFN (IFN-I). pDCs can be depleted in vivo by injecting diphtheria toxin (DT) in a mouse in which pDCs express a diphtheria toxin receptor (DTR) transgene driven by the human CLEC4C promoter. This promoter is enriched for binding sites for TCF4, a transcription factor that promotes pDC differentiation and expression of pDC markers, including CLEC4C. Here, we found that injection of DT in CLEC4C-DTR+ mice markedly augmented Th2-dependent skin inflammation in a model of contact hypersensitivity (CHS) induced by the hapten fluorescein isothiocyanate. Unexpectedly, this biased Th2 response was independent of reduced IFN-I accompanying pDC depletion. In fact, DT treatment altered the representation of conventional dendritic cells (cDCs) in the skin-draining lymph nodes during the sensitization phase of CHS; there were fewer Th1-priming CD326+ CD103+ cDC1 and more Th2-priming CD11b+ cDC2. Single-cell RNA-sequencing of CLEC4C-DTR+ cDCs revealed that CD326+ DCs, like pDCs, expressed DTR and were depleted together with pDCs by DT treatment. Since CD326+ DCs did not express Tcf4, DTR expression might be driven by yet-undefined transcription factors activating the CLEC4C promoter. These results demonstrate that altered DC representation in the skin-draining lymph nodes during sensitization to allergens can cause Th2-driven CHS.


Assuntos
Células Dendríticas/imunologia , Dermatite de Contato/imunologia , Interferon Tipo I/genética , Lectinas Tipo C/genética , Receptores Imunológicos/genética , Pele/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Dermatite de Contato/genética , Dermatite de Contato/patologia , Toxina Diftérica/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/imunologia , Humanos , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Células Th2/imunologia , Fator de Transcrição 4/genética , Fator de Transcrição 4/imunologia
10.
PLoS Pathog ; 16(7): e1008623, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32639986

RESUMO

Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nematodes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial nematodes of their endosymbiont, thus reducing female fecundity. However, it remains unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan of the adult worms. Concerns about resistance arising from mass drug administration necessitate a careful exploration of potential Wolbachia recrudescence. In the present study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia in adult worms and simultaneously impaired female worm fecundity. However, during an 8-month washout period, Wolbachia titers rebounded and embryogenesis returned to normal. Genome sequence analyses of Wolbachia revealed that despite the population bottleneck and recovery, no genetic changes occurred that could account for the rebound. Clusters of densely packed Wolbachia within the worm's ovarian tissues were observed by confocal microscopy and remained in worms treated with rifampicin, suggesting that they may serve as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To our knowledge, these clusters have not been previously described and may be the source of the Wolbachia rebound.


Assuntos
Brugia pahangi/microbiologia , Filariose/microbiologia , Filaricidas/farmacologia , Rifampina/farmacologia , Wolbachia/efeitos dos fármacos , Animais , Feminino , Gerbillinae
11.
Mol Biol Evol ; 37(1): 84-99, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501870

RESUMO

Liver and intestinal flukes of the family Fasciolidae cause zoonotic food-borne infections that impact both agriculture and human health throughout the world. Their evolutionary history and the genetic basis underlying their phenotypic and ecological diversity are not well understood. To close that knowledge gap, we compared the whole genomes of Fasciola hepatica, Fasciola gigantica, and Fasciolopsis buski and determined that the split between Fasciolopsis and Fasciola took place ∼90 Ma in the late Cretaceous period, and that between 65 and 50 Ma an intermediate host switch and a shift from intestinal to hepatic habitats occurred in the Fasciola lineage. The rapid climatic and ecological changes occurring during this period may have contributed to the adaptive radiation of these flukes. Expansion of cathepsins, fatty-acid-binding proteins, protein disulfide-isomerases, and molecular chaperones in the genus Fasciola highlights the significance of excretory-secretory proteins in these liver-dwelling flukes. Fasciola hepatica and Fasciola gigantica diverged ∼5 Ma near the Miocene-Pliocene boundary that coincides with reduced faunal exchange between Africa and Eurasia. Severe decrease in the effective population size ∼10 ka in Fasciola is consistent with a founder effect associated with its recent global spread through ruminant domestication. G-protein-coupled receptors may have key roles in adaptation of physiology and behavior to new ecological niches. This study has provided novel insights about the genome evolution of these important pathogens, has generated genomic resources to enable development of improved interventions and diagnosis, and has laid a solid foundation for genomic epidemiology to trace drug resistance and to aid surveillance.


Assuntos
Evolução Biológica , Fasciolidae/genética , Genoma Helmíntico , Animais , Família Multigênica
12.
Parasitol Res ; 120(2): 535-545, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33415393

RESUMO

Paragonimiasis is a foodborne trematode infection that affects 23 million people, mainly in Asia. Lung fluke infections lead frequently to chronic cough with fever and hemoptysis, and are often confused with lung cancer or tuberculosis. Paragonimiasis can be efficiently treated with praziquantel, but diagnosis is often delayed, and patients are frequently treated for other conditions. To improve diagnosis, we selected five Paragonimus kellicotti proteins based on transcriptional abundance, recognition by patient sera, and conservation among trematodes and expressed them as His-fusion proteins in Escherichia coli. Sequences for these proteins have 76-99% identity with amino acid sequences for orthologs in the genomes of Paragonimus westermani, Paragonimus heterotremus, and Paragonimus miyazakii. Immunohistology studies showed that antibodies raised to four recombinant proteins bound to the tegument of adult P. kellicotti worms, at the parasite host interface. Only a known egg antigen was absent from the tegument but present in developing and mature eggs. We evaluated the diagnostic potential of these antigens by Western blot with sera from patients with paragonimiasis (from MO and the Philippines), fascioliasis, and schistosomiasis, and with sera from healthy North American controls. Two recombinant proteins (a cysteine protease and a myoglobin) showed the highest sensitivity and specificity as diagnostic antigens, and they detected antibodies in sera from paragonimiasis patients with early or mature infections. In contrast, antibodies to egg yolk ferritin appeared to be specific marker for patients with adult fluke infections that produce eggs. Our study has identified and localized antigens that are promising for serodiagnosis of human paragonimiasis.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/imunologia , Paragonimíase/diagnóstico , Paragonimus/imunologia , Praziquantel/uso terapêutico , Adulto , Animais , Anti-Helmínticos , Antígenos de Helmintos/metabolismo , Ásia , Gerbillinae , Humanos , Imuno-Histoquímica , Paragonimíase/metabolismo , Paragonimíase/parasitologia , Paragonimus westermani/imunologia , Proteínas Recombinantes , Sensibilidade e Especificidade , Testes Sorológicos
13.
J Infect Dis ; 221(10): 1636-1646, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31832640

RESUMO

Specific spatial organization of granulomas within the lungs is crucial for protective anti-tuberculosis (TB) immune responses. However, only large animal models such as macaques are thought to reproduce the morphological hallmarks of human TB granulomas. In this study, we show that infection of mice with clinical "hypervirulent" Mycobacterium tuberculosis (Mtb) HN878 induces human-like granulomas composed of bacilli-loaded macrophages surrounded by lymphocytes and organized localization of germinal centers and B-cell follicles. Infection with laboratory-adapted Mtb H37Rv resulted in granulomas that are characterized by unorganized clusters of macrophages scattered between lymphocytes. An in-depth exploration of the functions of B cells within these follicles suggested diverse roles and the activation of signaling pathways associated with antigen presentation and immune cell recruitment. These findings support the use of clinical Mtb HN878 strain for infection in mice as an appropriate model to study immune parameters associated with human TB granulomas.


Assuntos
Linfócitos B/fisiologia , Granuloma/microbiologia , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/microbiologia , Animais , Granuloma/patologia , Cadeias mu de Imunoglobulina/genética , Cadeias mu de Imunoglobulina/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Linfócitos/fisiologia , Macaca mulatta , Macrófagos/fisiologia , Camundongos Knockout , Tuberculose Pulmonar/patologia , Virulência
14.
J Infect Dis ; 222(12): 2103-2113, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31844885

RESUMO

BACKGROUND: Although Schistosoma haematobium infection has been reported to be associated with alterations in immune function, in particular immune hyporesponsiveness, there have been only few studies that have used the approach of removing infection by drug treatment to establish this and to understand the underlying molecular mechanisms. METHODS: Schistosoma haematobium-infected schoolchildren were studied before and after praziquantel treatment and compared with uninfected controls. Cellular responses were characterized by cytokine production and flow cytometry, and in a subset of children RNA sequencing (RNA-Seq) transcriptome profiling was performed. RESULTS: Removal of S haematobium infection resulted in increased schistosome-specific cytokine responses that were negatively associated with CD4+CD25+FOXP3+ T-cells and accompanied by increased frequency of effector memory T-cells. Innate responses to Toll like receptor (TLR) ligation decreased with treatment and showed positive association with CD4+CD25+FOXP3+ T-cells. At the transcriptome level, schistosome infection was associated with enrichment in cell adhesion, whereas parasite removal was associated with a more quiescent profile. Further analysis indicated that alteration in cellular energy metabolism was associated with S haematobium infection and that the early growth response genes 2 and 3 (EGR 2 and EGR3), transcription factors that negatively regulate T-cell activation, may play a role in adaptive immune hyporesponsiveness. CONCLUSIONS: Using a longitudinal study design, we found contrasting effects of schistosome infection on innate and adaptive immune responses. Whereas the innate immune system appears more activated, the adaptive immunity is in a hyporesponsive state reflected in alterations in CD4+CD25+FOXP3+ T-cells, cellular metabolism, and transcription factors involved in anergy.


Assuntos
Anti-Helmínticos/uso terapêutico , Citocinas/imunologia , Praziquantel/uso terapêutico , Esquistossomose Urinária/imunologia , Transcriptoma , Imunidade Adaptativa , Animais , Criança , Feminino , Citometria de Fluxo , Gabão/epidemiologia , Humanos , Imunidade Inata , Estudos Longitudinais , Masculino , RNA-Seq , Esquistossomose Urinária/tratamento farmacológico
15.
Gastroenterology ; 157(4): 1109-1122, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31255652

RESUMO

BACKGROUND & AIMS: The intestinal microbiome might affect the development and severity of nonalcoholic fatty liver disease (NAFLD). We analyzed microbiomes of children with and without NAFLD. METHODS: We performed a prospective, observational, cross-sectional study of 87 children (age range, 8-17 years) with biopsy-proven NAFLD and 37 children with obesity without NAFLD (controls). Fecal samples were collected and microbiome composition and functions were assessed using 16S ribosomal RNA amplicon sequencing and metagenomic shotgun sequencing. Microbial taxa were identified using zero-inflated negative binomial modeling. Genes contributing to bacterial pathways were identified using gene set enrichment analysis. RESULTS: Fecal microbiomes of children with NAFLD had lower α-diversity than those of control children (3.32 vs 3.52, P = .016). Fecal microbiomes from children with nonalcoholic steatohepatitis (NASH) had the lowest α-diversity (control, 3.52; NAFLD, 3.36; borderline NASH, 3.37; NASH, 2.97; P = .001). High abundance of Prevotella copri was associated with more severe fibrosis (P = .036). Genes for lipopolysaccharide biosynthesis were enriched in microbiomes from children with NASH (P < .001). Classification and regression tree model with level of alanine aminotransferase and relative abundance of the lipopolysaccharide pathway gene encoding 3-deoxy-d-manno-octulosonate 8-phosphate-phosphatase identified patients with NASH with an area under the receiver operating characteristic curve value of 0.92. Genes involved in flagellar assembly were enriched in the fecal microbiomes of patients with moderate to severe fibrosis (P < .001). Classification and regression tree models based on level of alanine aminotransferase and abundance of genes encoding flagellar biosynthesis protein had good accuracy for identifying case children with moderate to severe fibrosis (area under the receiver operating characteristic curve, 0.87). CONCLUSIONS: In an analysis of fecal microbiomes of children with NAFLD, we associated NAFLD and NASH with intestinal dysbiosis. NAFLD and its severity were associated with greater abundance of genes encoding inflammatory bacterial products. Alterations to the intestinal microbiome might contribute to the pathogenesis of NAFLD and be used as markers of disease or severity.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Microbioma Gastrointestinal , Intestinos/microbiologia , Cirrose Hepática/microbiologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , RNA Ribossômico 16S/genética , Adolescente , Bactérias/classificação , Bactérias/patogenicidade , Estudos de Casos e Controles , Criança , Estudos Transversais , Disbiose , Fezes/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Masculino , Metagenoma , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Estudos Prospectivos , Ribotipagem , Índice de Gravidade de Doença
16.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787151

RESUMO

Vicriviroc (VCV) is a CCR5 antagonist that blocks the viral entry of CCR5-tropic (R5) virions by binding to and inducing a conformational change in the chemokine receptor. Clinical resistance to CCR5 antagonists occurs in two phases, competitive and noncompetitive stages. In this study, we analyzed two subjects, from a phase 2b VCV clinical trial, whose quasispecies contained R5 and dual-mixed virions at the earliest recorded time of virological failure (VF). Genotypic analysis of R5-tropic patient-derived envelope genes revealed significant changes in the V1/V2 coding domain and convergence toward a more homogenous sequence under VCV therapy. Additionally, a small population of baseline clones sharing similar V1/V2 and V3 domains with the predominant VF isolate was observed. These clones were denoted preresistant based on their genotype. Preresistant clones and chimeric clones containing V1/V2 regions isolated during VF displayed high 50% inhibitory concentration (IC50) values relative to those at baseline, consistent with early competitive resistance. Genotypic analysis of the dual-tropic clones also showed significant changes in the V1/V2 region, different from the resistant R5-tropic viruses. Our findings suggest that the V1/V2 domain plays a key role in the initial step of development of drug resistance.IMPORTANCE It is believed that each CCR5 antagonist-resistant isolate will develop its own unique set of mutations, making it difficult to identify a signature mutation that can effectively predict CCR5 antagonist resistance. This may explain why we do not observe shared mutations among clinical studies. The present study examined the earliest events in the development of drug resistance with viral quasispecies that continued the use of CCR5 for entry. Genotypic and phenotypic assays demonstrated a distinct role of the variable domain V1/V2 in competitive resistance to CCR5 antagonist therapy. Thus, future studies analyzing the development of clinical resistance should focus on the relationship between the V1/V2 and V3 domains.


Assuntos
Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Piperazinas/farmacologia , Pirimidinas/farmacologia , Receptores CCR5/metabolismo , Internalização do Vírus/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Domínios Proteicos
17.
PLoS Genet ; 13(6): e1006857, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28644839

RESUMO

Preventive chemotherapy has long been practiced against nematode parasites of livestock, leading to widespread drug resistance, and is increasingly being adopted for eradication of human parasitic nematodes even though it is similarly likely to lead to drug resistance. Given that the genetic architecture of resistance is poorly understood for any nematode, we have analyzed multidrug resistant Teladorsagia circumcincta, a major parasite of sheep, as a model for analysis of resistance selection. We introgressed a field-derived multiresistant genotype into a partially inbred susceptible genetic background (through repeated backcrossing and drug selection) and performed genome-wide scans in the backcross progeny and drug-selected F2 populations to identify the major genes responsible for the multidrug resistance. We identified variation linking candidate resistance genes to each drug class. Putative mechanisms included target site polymorphism, changes in likely regulatory regions and copy number variation in efflux transporters. This work elucidates the genetic architecture of multiple anthelmintic resistance in a parasitic nematode for the first time and establishes a framework for future studies of anthelmintic resistance in nematode parasites of humans.


Assuntos
Anti-Helmínticos/uso terapêutico , Resistência a Medicamentos/genética , Trichostrongyloidea/genética , Tricostrongiloidíase/tratamento farmacológico , Animais , Mapeamento Cromossômico , Variações do Número de Cópias de DNA/genética , Genótipo , Humanos , Ovinos/parasitologia , Trichostrongyloidea/efeitos dos fármacos , Trichostrongyloidea/patogenicidade , Tricostrongiloidíase/genética , Tricostrongiloidíase/parasitologia
18.
PLoS Genet ; 13(1): e1006537, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28060841

RESUMO

Food borne trematodes (FBTs) are an assemblage of platyhelminth parasites transmitted through the food chain, four of which are recognized as neglected tropical diseases (NTDs). Fascioliasis stands out among the other NTDs due to its broad and significant impact on both human and animal health, as Fasciola sp., are also considered major pathogens of domesticated ruminants. Here we present a reference genome sequence of the common liver fluke, Fasciola hepatica isolated from sheep, complementing previously reported isolate from cattle. A total of 14,642 genes were predicted from the 1.14 GB genome of the liver fluke. Comparative genomics indicated that F. hepatica Oregon and related food-borne trematodes are metabolically less constrained than schistosomes and cestodes, taking advantage of the richer millieux offered by the hepatobiliary organs. Protease families differentially expanded between diverse trematodes may facilitate migration and survival within the heterogeneous environments and niches within the mammalian host. Surprisingly, the sequencing of Oregon and Uruguay F. hepatica isolates led to the first discovery of an endobacteria in this species. Two contigs from the F. hepatica Oregon assembly were joined to complete the 859,205 bp genome of a novel Neorickettsia endobacterium (nFh) closely related to the etiological agents of human Sennetsu and Potomac horse fevers. Immunohistochemical studies targeting a Neorickettsia surface protein found nFh in specific organs and tissues of the adult trematode including the female reproductive tract, eggs, the Mehlis' gland, seminal vesicle, and oral suckers, suggesting putative routes for fluke-to-fluke and fluke-to-host transmission. The genomes of F. hepatica and nFh will serve as a resource for further exploration of the biology of F. hepatica, and specifically its newly discovered trans-kingdom interaction with nFh and the impact of both species on disease in ruminants and humans.


Assuntos
Fasciola hepatica/genética , Genoma Bacteriano , Genoma Helmíntico , Neorickettsia sennetsu/genética , Animais , Proteínas da Membrana Bacteriana Externa/genética , Ehrlichiose/microbiologia , Ehrlichiose/transmissão , Ehrlichiose/veterinária , Fasciola hepatica/isolamento & purificação , Fasciola hepatica/microbiologia , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/transmissão , Cavalos , Humanos , Neorickettsia sennetsu/patogenicidade , Oregon , Ovinos/parasitologia , Uruguai
19.
Stat Med ; 38(12): 2248-2268, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-30761571

RESUMO

Clustered overdispersed multivariate count data are challenging to model due to the presence of correlation within and between samples. Typically, the first source of correlation needs to be addressed but its quantification is of less interest. Here, we focus on the correlation between time points. In addition, the effects of covariates on the multivariate counts distribution need to be assessed. To fulfill these requirements, a regression model based on the Dirichlet-multinomial distribution for association between covariates and the categorical counts is extended by using random effects to deal with the additional clustering. This model is the Dirichlet-multinomial mixed regression model. Alternatively, a negative binomial regression mixed model can be deployed where the corresponding likelihood is conditioned on the total count. It appears that these two approaches are equivalent when the total count is fixed and independent of the random effects. We consider both subject-specific and categorical-specific random effects. However, the latter has a larger computational burden when the number of categories increases. Our work is motivated by microbiome data sets obtained by sequencing of the amplicon of the bacterial 16S rRNA gene. These data have a compositional structure and are typically overdispersed. The microbiome data set is from an epidemiological study carried out in a helminth-endemic area in Indonesia. The conclusions are as follows: time has no statistically significant effect on microbiome composition, the correlation between subjects is statistically significant, and treatment has a significant effect on the microbiome composition only in infected subjects who remained infected.


Assuntos
Análise Multivariada , Análise de Regressão , Simulação por Computador , Humanos , Microbiota , Modelos Estatísticos
20.
Nature ; 493(7430): 45-50, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23222524

RESUMO

Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal metagenomes of 207 individuals from Europe and North America. Using 7.4 billion reads aligned to 101 reference species, we detected 10.3 million single nucleotide polymorphisms (SNPs), 107,991 short insertions/deletions, and 1,051 structural variants. The average ratio of non-synonymous to synonymous polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates that individual-specific strains are not easily replaced and that an individual might have a unique metagenomic genotype, which may be exploitable for personalized diet or drug intake.


Assuntos
Variação Genética/genética , Intestinos/microbiologia , Metagenoma/genética , Europa (Continente) , Fezes/microbiologia , Genoma Bacteriano/genética , Genótipo , Mapeamento Geográfico , Humanos , América do Norte , Polimorfismo de Nucleotídeo Único/genética , Padrões de Referência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA