Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Mol Ther ; 30(8): 2722-2745, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35524407

RESUMO

Second-order spinal cord excitatory neurons play a key role in spinal processing and transmission of pain signals to the brain. Exogenously induced change in developmentally imprinted excitatory neurotransmitter phenotypes of these neurons to inhibitory has not yet been achieved. Here, we use a subpial dorsal horn-targeted delivery of AAV (adeno-associated virus) vector(s) encoding GABA (gamma-aminobutyric acid) synthesizing-releasing inhibitory machinery in mice with neuropathic pain. Treated animals showed a progressive and complete reversal of neuropathic pain (tactile and brush-evoked pain behavior) that persisted for a minimum of 2.5 months post-treatment. The mechanism of this treatment effect results from the switch of excitatory to preferential inhibitory neurotransmitter phenotype in dorsal horn nociceptive neurons and a resulting increase in inhibitory activity in regional spinal circuitry after peripheral nociceptive stimulation. No detectable side effects (e.g., sedation, motor weakness, loss of normal sensation) were seen between 2 and 13 months post-treatment in naive adult mice, pigs, and non-human primates. The use of this treatment approach may represent a potent and safe treatment modality in patients suffering from spinal cord or peripheral nerve injury-induced neuropathic pain.


Assuntos
Neuralgia , Nociceptores , Animais , Técnicas de Transferência de Genes , Camundongos , Neuralgia/etiologia , Neuralgia/terapia , Células do Corno Posterior , Medula Espinal , Corno Dorsal da Medula Espinal , Suínos
2.
Mol Ther ; 28(1): 180-188, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31676153

RESUMO

Prevalence of left ventricular (LV) systolic and diastolic dysfunction increases with aging. We previously reported that urocortin 2 (Ucn2) gene transfer increases heart function in mice with heart failure with reduced ejection fraction. Here, we test the hypotheses that (1) Ucn2 gene transfer will increase LV function in aged mice and that (2) Ucn2 gene transfer given in early life will prevent age-related LV dysfunction. Nineteen-month-old (treatment study) and 3-month-old (prevention study) mice received Ucn2 gene transfer or saline. LV function was examined 3-4 months (treatment study) or 20 months (prevention study) after Ucn2 gene transfer or saline injection. In both the treatment and prevention strategies, Ucn2 gene transfer increased ejection fraction, reduced LV volume, increased LV peak -dP/dt and peak +dP/dt, and reduced global longitudinal strain. Ucn2 gene transfer-in both treatment and prevention strategies-was associated with higher levels of LV SERCA2a protein, reduced phosphorylation of LV CaMKIIa, and reduced LV α-skeletal actin mRNA expression (reflecting reduced cardiac stress). In conclusion, Ucn2 gene transfer restores normal cardiac function in mice with age-related LV dysfunction and prevents development of LV dysfunction.


Assuntos
Envelhecimento , Hormônio Liberador da Corticotropina/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Urocortinas/genética , Disfunção Ventricular Esquerda/prevenção & controle , Disfunção Ventricular Esquerda/terapia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hormônio Liberador da Corticotropina/sangue , Feminino , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Volume Sistólico , Urocortinas/sangue , Função Ventricular Esquerda/genética
3.
Proc Natl Acad Sci U S A ; 110(5): E387-96, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23319652

RESUMO

cAMP-dependent protein kinase (PKA) regulates a myriad of functions in the heart, including cardiac contractility, myocardial metabolism,and gene expression. However, a molecular integrator of the PKA response in the heart is unknown. Here, we show that the PKA adaptor A-kinase interacting protein 1 (AKIP1) is up-regulated in cardiac myocytes in response to oxidant stress. Mice with cardiac gene transfer of AKIP1 have enhanced protection to ischemic stress. We hypothesized that this adaptation to stress was mitochondrial dependent. AKIP1 interacted with the mitochondrial localized apoptosis inducing factor (AIF) under both normal and oxidant stress. When cardiac myocytes or whole hearts are exposed to oxidant and ischemic stress, levels of both AKIP1 and AIF were enhanced. AKIP1 is preferentially localized to interfibrillary mitochondria and up-regulated in this cardiac mitochondrial subpopulation on ischemic injury. Mitochondria isolated from AKIP1 gene transferred hearts showed increased mitochondrial localization of AKIP1, decreased reactive oxygen species generation, enhanced calcium tolerance, decreased mitochondrial cytochrome C release,and enhance phosphorylation of mitochondrial PKA substrates on ischemic stress. These observations highlight AKIP1 as a critical molecular regulator and a therapeutic control point for stress adaptation in the heart.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Fator de Indução de Apoptose/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Células HeLa , Coração/fisiopatologia , Humanos , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Nucleares/genética , Oxidantes/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley
4.
Proc Natl Acad Sci U S A ; 109(9): 3377-82, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331909

RESUMO

Lesch-Nyhan disease (LND) is an X-linked genetic disorder caused by mutations of the hypoxanthine guanine phosphoribosyltransferase (HPRT) purine biosynthesis gene and characterized by aberrant purine metabolism, deficient basal ganglia dopamine levels, dystonia, and severe neurobehavioral manifestations, including compulsive self-injurious behavior. Although available evidence has identified important roles for purinergic signaling in brain development, the mechanisms linking HPRT deficiency, purinergic pathways, and neural dysfunction of LND are poorly understood. In these studies aimed at characterizing purinergic signaling in HPRT deficiency, we used a lentivirus vector stably expressing an shRNA targeted to the HPRT gene to produce HPRT-deficient human CVB induced pluripotent stem cells and human HUES11 embryonic stem cells. Both CVB and HUES11 cells show >99% HPRT knockdown and demonstrate markedly decreased expression of the purinergic P2Y1 receptor mRNA. In CVB cells, P2Y1 mRNA and protein down-regulation by HPRT knockdown is refractory to activation by the P2Y1 receptor agonist ATP and shows aberrant purinergic signaling, as reflected by marked deficiency of the transcription factor pCREB and constitutive activation of the MAP kinases phospho-ERK1/2. Moreover, HPRT-knockdown CVB cells also demonstrate marked reduction of phosphorylated ß-catenin. These results indicate that the housekeeping gene HPRT regulates purinergic signaling in pluripotent human stem cells, and that this regulation occurs at least partly through aberrant P2Y1-mediated expression and signaling. We propose that such mechanisms may play a role in the neuropathology of HPRT-deficiency LND and may point to potential molecular targets for modulation of this intractable neurological phenotype.


Assuntos
Hipoxantina Fosforribosiltransferase/fisiologia , Neurogênese/fisiologia , Células-Tronco Pluripotentes/enzimologia , Purinas/metabolismo , Trifosfato de Adenosina/farmacologia , Linhagem Celular , Fibroblastos/enzimologia , Técnicas de Silenciamento de Genes , Genes Essenciais , Vetores Genéticos/genética , Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio Sintase Quinase 3 beta , Humanos , Lentivirus/genética , Síndrome de Lesch-Nyhan/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/fisiologia , beta Catenina/metabolismo
5.
FASEB J ; 26(11): 4637-49, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22859372

RESUMO

We show here that the apposition of plasma membrane caveolae and mitochondria (first noted in electron micrographs >50 yr ago) and caveolae-mitochondria interaction regulates adaptation to cellular stress by modulating the structure and function of mitochondria. In C57Bl/6 mice engineered to overexpress caveolin specifically in cardiac myocytes (Cav-3 OE), localization of caveolin to mitochondria increases membrane rigidity (4.2%; P<0.05), tolerance to calcium, and respiratory function (72% increase in state 3 and 23% increase in complex IV activity; P<0.05), while reducing stress-induced generation of reactive oxygen species (by 20% in cellular superoxide and 41 and 28% in mitochondrial superoxide under states 4 and 3, respectively; P<0.05) in Cav-3 OE vs. TGneg. By contrast, mitochondrial function is abnormal in caveolin-knockout mice and Caenorhabditis elegans with null mutations in caveolin (60% increase free radical in Cav-2 C. elegans mutants; P<0.05). In human colon cancer cells, mitochondria with increased caveolin have a 30% decrease in apoptotic stress (P<0.05), but cells with disrupted mitochondria-caveolin interaction have a 30% increase in stress response (P<0.05). Targeted gene transfer of caveolin to mitochondria in C57Bl/6 mice increases cardiac mitochondria tolerance to calcium, enhances respiratory function (increases of 90% state 4, 220% state 3, 88% complex IV activity; P<0.05), and decreases (by 33%) cardiac damage (P<0.05). Physical association and apparently the transfer of caveolin between caveolae and mitochondria is thus a conserved cellular response that confers protection from cellular damage in a variety of tissues and settings.


Assuntos
Caveolinas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Fisiológico/fisiologia , Adaptação Fisiológica , Animais , Cálcio/metabolismo , Cálcio/toxicidade , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/análise
6.
Mol Ther ; 20(12): 2212-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23089731

RESUMO

Mechanisms of the transition from compensatory hypertrophy to heart failure are poorly understood and the roles of vascular endothelial growth factors (VEGFs) in this process have not been fully clarified. We determined the expression profile of VEGFs and relevant receptors during the progression of left ventricular hypertrophy (LVH). C57BL mice were exposed to transversal aortic constriction (TAC) and the outcome was studied at different time points (1 day, 2, 4, and 10 weeks). A clear compensatory phase (2 weeks after TAC) was seen with following heart failure (4 weeks after TAC). Interestingly, VEGF-C and VEGF-D as well as VEGF receptor-3 (VEGFR-3) were upregulated in the compensatory hypertrophy and VEGF-B was downregulated in the heart failure. After treatment with adeno-associated virus serotype 9 (AAV9)-VEGF-B(186) gene therapy in the compensatory phase for 4 weeks the function of the heart was preserved due to angiogenesis, inhibition of apoptosis, and promotion of cardiomyocyte proliferation. Also, the genetic programming towards fetal gene expression, a known phenomenon in heart failure, was partly reversed in AAV9-VEGF-B(186)-treated mice. We conclude that VEGF-C and VEGF-D are associated with the compensatory LVH and that AAV9-VEGF-B(186) gene transfer can rescue the function of the failing heart and postpone the transition towards heart failure.


Assuntos
Adenoviridae/genética , Hipertrofia Ventricular Esquerda/terapia , Fator B de Crescimento do Endotélio Vascular/metabolismo , Animais , Ecocardiografia , Hipertrofia Ventricular Esquerda/fisiopatologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator B de Crescimento do Endotélio Vascular/genética
7.
J Biol Chem ; 286(38): 33310-21, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21799010

RESUMO

Decreased expression of prosurvival and progrowth-stimulatory pathways, in addition to an environment that inhibits neuronal growth, contribute to the limited regenerative capacity in the central nervous system following injury or neurodegeneration. Membrane/lipid rafts, plasmalemmal microdomains enriched in cholesterol, sphingolipids, and the protein caveolin (Cav) are essential for synaptic development/stabilization and neuronal signaling. Cav-1 concentrates glutamate and neurotrophin receptors and prosurvival kinases and regulates cAMP formation. Here, we show that primary neurons that express a synapsin-driven Cav-1 vector (SynCav1) have increased raft formation, neurotransmitter and neurotrophin receptor expression, NMDA- and BDNF-mediated prosurvival kinase activation, agonist-stimulated cAMP formation, and dendritic growth. Moreover, expression of SynCav1 in Cav-1 KO neurons restores NMDA- and BDNF-mediated signaling and enhances dendritic growth. The enhanced dendritic growth occurred even in the presence of inhibitory cytokines (TNFα, IL-1ß) and myelin-associated glycoproteins (MAG, Nogo). Targeting of Cav-1 to neurons thus enhances prosurvival and progrowth signaling and may be a novel means to repair the injured and neurodegenerative brain.


Assuntos
Caveolina 1/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/metabolismo , Citocinas/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Associada a Mielina/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapsinas/metabolismo
9.
Theranostics ; 12(12): 5389-5403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910808

RESUMO

Elevating neuroprotective proteins using adeno-associated virus (AAV)-mediated gene delivery shows great promise in combating devastating neurodegenerative diseases. Amyotrophic lateral sclerosis (ALS) is one such disease resulting from loss of upper and lower motor neurons (MNs) with 90-95% of cases sporadic (SALS) in nature. Due to the unknown etiology of SALS, interventions that afford neuronal protection and preservation are urgently needed. Caveolin-1 (Cav-1), a membrane/lipid rafts (MLRs) scaffolding and neuroprotective protein, and MLR-associated signaling components are decreased in degenerating neurons in postmortem human brains. We previously showed that, when crossing our SynCav1 transgenic mouse (TG) with the mutant human superoxide dismutase 1 (hSOD1G93A) mouse model of ALS, the double transgenic mouse (SynCav1 TG/hSOD1G93A) exhibited better motor function and longer survival. The objective of the current study was to test whether neuron-targeted Cav-1 upregulation in the spinal cord using AAV9-SynCav1 could improve motor function and extend longevity in mutant humanized mouse and rat (hSOD1G93A) models of familial (F)ALS. Methods: Motor function was assessed by voluntary running wheel (RW) in mice and forelimb grip strength (GS) and motor evoked potentials (MEP) in rats. Immunofluorescence (IF) microscopy for choline acetyltransferase (ChAT) was used to assess MN morphology. Neuromuscular junctions (NMJs) were measured by bungarotoxin-a (Btx-a) and synaptophysin IF. Body weight (BW) was measured weekly, and the survival curve was determined by Kaplan-Meier analysis. Results: Following subpial gene delivery to the lumbar spinal cord, male and female hSOD1G93A mice treated with SynCav1 exhibited delayed disease onset, greater running-wheel performance, preserved spinal alpha-motor neuron morphology and NMJ integrity, and 10% increased longevity, independent of affecting expression of the mutant hSOD1G93A protein. Cervical subpial SynCav1 delivery to hSOD1G93A rats preserved forelimb GS and MEPs in the brachial and gastrocnemius muscles. Conclusion: In summary, subpial delivery of SynCav1 protects and preserves spinal motor neurons, and extends longevity in a familial mouse model of ALS without reducing the toxic monogenic component. Furthermore, subpial SynCav1 delivery preserved neuromuscular function in a rat model of FALS. The latter findings strongly indicate the therapeutic applicability of SynCav1 to treat ALS attributed to monogenic (FALS) and potentially in sporadic cases (i.e., SALS).


Assuntos
Esclerose Lateral Amiotrófica , Caveolina 1 , Técnicas de Transferência de Genes , Sinapsinas , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 1/uso terapêutico , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Ratos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinapsinas/uso terapêutico
10.
Mol Pharmacol ; 79(3): 381-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21127130

RESUMO

Cardiac-directed expression of AC6 has pronounced favorable effects on cardiac function possibly not linked with cAMP production. To determine rigorously whether cAMP generation is required for the beneficial effects of increased AC6 expression, we generated a catalytically inactive AC6 mutant (AC6mut) that has markedly diminished cAMP generating capacity by replacing aspartic acid with alanine at position 426 in the C1 domain (catalytic region) of AC6. Gene transfer of AC6 or AC6mut (adenovirus-mediated) in adult rat cardiac myocytes resulted in similar expression levels and intracellular distribution, but AC6mut expression was associated with marked reduction in cAMP production. Despite marked reduction in cAMP generation, AC6mut influenced intracellular signaling events similarly to that observed after expression of catalytically intact AC6. For example, both AC6 and AC6mut reduced phenylephrine-induced cardiac myocyte hypertrophy and apoptosis (p < 0.001), expression of cardiac ankyrin repeat protein (p < 0.01), and phospholamban (p < 0.05). AC6mut expression, similar to its catalytically intact cohort, was associated with increased Ca2+ transients in cardiac myocytes after isoproterenol stimulation. Many of the biological effects of AC6 expression are replicated by a catalytically inactive AC6 mutant, indicating that the mechanisms for these effects do not require increased cAMP generation.


Assuntos
Adenilil Ciclases/fisiologia , Miócitos Cardíacos/enzimologia , Mutação Puntual/fisiologia , Adenilil Ciclases/biossíntese , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Calcineurina/metabolismo , Cálcio/metabolismo , Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/biossíntese , Proteínas de Ligação ao Cálcio/metabolismo , AMP Cíclico/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertrofia/enzimologia , Hipertrofia/fisiopatologia , Proteínas Musculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Proteínas Nucleares/metabolismo , Fenilefrina/farmacologia , Fosforilação , Mutação Puntual/genética , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/metabolismo , Troponina I/biossíntese , Troponina I/metabolismo
11.
Anesthesiology ; 115(3): 499-508, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21862885

RESUMO

BACKGROUND: Volatile anesthetics have a dual effect on cell survival dependent on caveolin expression. The effect of volatile anesthetics on cancer cell survival and death after anesthetic exposure has not been well investigated. The authors examined the effects of isoflurane exposure on apoptosis and its regulation by caveolin-1 (Cav-1). METHODS: The authors exposed human colon cancer cell lines to isoflurane and proapoptotic stimuli and assessed what role Cav-1 plays in cell protection. They evaluated apoptosis using assays for nucleosomal fragmentation, cleaved caspase 3 expression, and caspase activity assays. To test the mechanism, they used pharmacologic inhibitors (i.e., pertussis toxin) and assessed changes in glycolysis. RESULTS: Apoptosis as measured by nucleosomal fragmentation was enhanced by isoflurane (1.2% in air) in HT29 (by 64% relative to control, P < 0.001) and decreased in HCT116 (by 23% relative to control, P < 0.001) cells. Knockdown of Cav-1 in HCT116 cells increased the sensitivity to apoptotic stimuli but not with scrambled small interfering RNA (siRNA) treatment (19.7 ± 0.4 vs. 20.0 ± 0.6, P = 0.7786 and 19.7 ± 0.5 vs. 16.3 ± 0.4, P = 0.0012, isoflurane vs. control in Cav-1 small interfering RNA vs. scrambled small interfering RNA treated cells, respectively). The protective effect of isoflurane with various exposure times on apoptosis was enhanced in HT29 cells overexpressing Cav-1 (P < 0.001 by two-way ANOVA). Pertussis toxin effectively blocked the antiapoptotic effect of isoflurane exhibited by Cav-1 in all cell lines. Cav-1 cells had increased glycolysis with isoflurane exposure; however, in the presence of tumor necrosis factor-related apoptosis-inducing ligand, this increase in glycolysis was maintained in HT29-Cav-1 but not control cells. CONCLUSION: Brief isoflurane exposure leads to resistance against apoptosis via a Cav-1-dependent mechanism.


Assuntos
Anestésicos Inalatórios/farmacologia , Apoptose/efeitos dos fármacos , Caveolina 1/fisiologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Western Blotting , Caspase 3/metabolismo , Caveolina 1/biossíntese , Caveolina 1/genética , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP/metabolismo , Células HCT116 , Células HT29 , Humanos , Indicadores e Reagentes , Consumo de Oxigênio/fisiologia , Plasmídeos/genética , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
12.
Nat Biomed Eng ; 5(2): 157-168, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32929188

RESUMO

Myotonic dystrophy type I (DM1) is a multisystemic autosomal-dominant inherited human disorder that is caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of DMPK. Toxic RNAs expressed from such repetitive sequences can be eliminated using CRISPR-mediated RNA targeting, yet evidence of its in vivo efficacy and durability is lacking. Here, using adult and neonatal mouse models of DM1, we show that intramuscular or systemic injections of adeno-associated virus (AAV) vectors encoding nuclease-dead Cas9 and a single-guide RNA targeting CUG repeats results in the expression of the RNA-targeting Cas9 for up to three months, redistribution of the RNA-splicing protein muscleblind-like splicing regulator 1, elimination of foci of toxic RNA, reversal of splicing biomarkers and amelioration of myotonia. The sustained reversal of DM1 phenotypes provides further support that RNA-targeting Cas9 is a viable strategy for treating DM1 and other MRE-associated diseases.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes/métodos , Distrofia Miotônica/metabolismo , RNA/metabolismo , Adenoviridae/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Vetores Genéticos/fisiologia , Masculino , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Fenótipo
13.
Mol Ther Methods Clin Dev ; 21: 434-450, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33981778

RESUMO

Alzheimer's disease (AD) is the most common form of neurodegeneration and cognitive dysfunction in the elderly. Identifying molecular signals that mitigate and reverse neurodegeneration in AD may be exploited therapeutically. Transgenic AD mice (PSAPP) exhibit learning and memory deficits at 9 and 11 months, respectively, with associated decreased expression of caveolin-1 (Cav-1), a membrane/lipid raft (MLR) scaffolding protein necessary for synaptic and neuroplasticity. Neuronal-targeted gene therapy using synapsin-Cav-1 cDNA (SynCav1) was delivered to the hippocampus of PSAPP mice at 3 months using adeno-associated virus serotype 9 (AAV9). Bilateral SynCav1 gene therapy was able to preserve MLRs profile, learning and memory, hippocampal dendritic arbor, synaptic ultrastructure, and axonal myelin content in 9- and 11-month PSAPP mice, independent of reducing toxic amyloid deposits and astrogliosis. Our data indicate that SynCav1 gene therapy may be an option for AD and potentially in other forms of neurodegeneration of unknown etiology.

14.
Nat Med ; 26(1): 118-130, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873312

RESUMO

Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Dependovirus/metabolismo , Inativação Gênica , Técnicas de Transferência de Genes , Neurônios Motores/patologia , Degeneração Neural/terapia , Pia-Máter/patologia , Medula Espinal/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Atrofia , Progressão da Doença , Potencial Evocado Motor , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Interneurônios/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Desenvolvimento Muscular , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Pia-Máter/fisiopatologia , Primatas , Dobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/fisiopatologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Suínos
15.
Circulation ; 118(19): 1979-88, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18936328

RESUMO

BACKGROUND: Caveolae, lipid-rich microdomains of the sarcolemma, localize and enrich cardiac-protective signaling molecules. Caveolin-3 (Cav-3), the dominant isoform in cardiac myocytes, is a determinant of caveolar formation. We hypothesized that cardiac myocyte-specific overexpression of Cav-3 would enhance the formation of caveolae and augment cardiac protection in vivo. METHODS AND RESULTS: Ischemic preconditioning in vivo increased the formation of caveolae. Adenovirus for Cav-3 increased caveolar formation and phosphorylation of survival kinases in cardiac myocytes. A transgenic mouse with cardiac myocyte-specific overexpression of Cav-3 (Cav-3 OE) showed enhanced formation of caveolae on the sarcolemma. Cav-3 OE mice subjected to ischemia/reperfusion injury had a significantly reduced infarct size relative to transgene-negative mice. Endogenous cardiac protection in Cav-3 OE mice was similar to wild-type mice undergoing ischemic preconditioning; no increased protection was observed in preconditioned Cav-3 OE mice. Cav-3 knockout mice did not show endogenous protection and showed no protection in response to ischemic preconditioning. Cav-3 OE mouse hearts had increased basal Akt and glycogen synthase kinase-3beta phosphorylation comparable to wild-type mice exposed to ischemic preconditioning. Wortmannin, a phosphoinositide 3-kinase inhibitor, attenuated basal phosphorylation of Akt and glycogen synthase kinase-3beta and blocked cardiac protection in Cav-3 OE mice. Cav-3 OE mice had improved functional recovery and reduced apoptosis at 24 hours of reperfusion. CONCLUSIONS: Expression of caveolin-3 is both necessary and sufficient for cardiac protection, a conclusion that unites long-standing ultrastructural and molecular observations in the ischemic heart. The present results indicate that increased expression of caveolins, apparently via actions that depend on phosphoinositide 3-kinase, has the potential to protect hearts exposed to ischemia/reperfusion injury.


Assuntos
Caveolina 3/genética , Caveolina 3/metabolismo , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Adenoviridae/genética , Animais , Apoptose/fisiologia , Cavéolas/fisiologia , Cavéolas/ultraestrutura , Colesterol/metabolismo , Expressão Gênica/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/ultraestrutura , Óxido Nítrico Sintase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sarcolema/fisiologia , Sarcolema/ultraestrutura
16.
Biochem Biophys Res Commun ; 384(2): 193-8, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19450723

RESUMO

The Ser/Thr-specific phosphatase PHLPP (pleckstrin homology domain leucine-rich repeat protein phosphatase) regulates the amplitude and duration of agonist-evoked Akt signaling by dephosphorylating the hydrophobic motif (Ser473) of Akt, therefore inactivating Akt. We recently reported that gene transfer of adenylyl cyclase type 6 (AC6) into neonatal rat cardiac myocytes was associated with increased Akt phosphorylation and activity. To determine the underlying mechanisms for AC6-associated increase in Akt activation, we determined how AC6 gene transfer regulated the activity of PHLPP2 (one of the three PHLPP family phosphatases) in neonatal rat cardiac myocytes. We found that increased Akt activity was associated with inhibition of PHLPP2 activity by AC6. AC6 was physically associated with PHLPP2, which prevents PHLPP2-mediated Akt dephosphorylation. However, isoproterenol or forskolin stimulation immediately activated PHLPP2, which resulted in markedly dephosphorylation of Akt at Ser473. Activation of PHLPP2 by isoproterenol and forskolin was cAMP-independent, but required an intact cytoplasmic domain of AC6. Mutation in the cytoplasmic domain of AC6 abolished agonist-induced PHLPP2 activation. This novel bidirectional regulation of Akt activity may contribute to the unexpected favorable effects of AC6 on the failing heart.


Assuntos
Adenilil Ciclases/biossíntese , Miócitos Cardíacos/enzimologia , Fosfoproteínas Fosfatases/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adenilil Ciclases/química , Adenilil Ciclases/genética , Animais , Células Cultivadas , Colforsina/farmacologia , Ativação Enzimática , Isoproterenol/farmacologia , Mutação , Fosfoproteínas Fosfatases/antagonistas & inibidores , Conformação Proteica , Ratos , Transfecção
17.
Sci Rep ; 9(1): 6934, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061510

RESUMO

Familial hypercholesterolemia (FH) is an inherited disease of lipoprotein metabolism caused by a defect in the LDL receptor (LDLR) leading to severe hypercholesterolemia, and associated with an increased risk of coronary heart disease and myocardial infarction. We have developed a gene therapy protocol for FH using AAV2, AAV9 and lentiviral vectors and tested safety and efficacy in LDL receptor deficient Watanabe Heritable Hyperlipidemic rabbits. We show that LV-LDLR produced a significant long-lasting decrease in total serum cholesterol whereas AAV9-LDLR resulted only in a transient decrease and AAV2-LDLR failed to reduce serum cholesterol levels. A significant pathological side effect, bile-duct proliferation, was seen in the liver of AAV2-LDLR rabbits associated with an increased expression of Cyr61 matricellular protein. Special attention should be given to liver changes in gene therapy applications when genes affecting cholesterol and lipoprotein metabolism are used for therapy.


Assuntos
Ductos Biliares/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Fígado/metabolismo , Parvovirinae/genética , Receptores de LDL/genética , Animais , Ductos Biliares/patologia , Biomarcadores , Colesterol/metabolismo , Dependovirus , Expressão Gênica , Técnicas de Transferência de Genes/efeitos adversos , Imuno-Histoquímica , Metabolismo dos Lipídeos , Fígado/patologia , Coelhos
18.
Hum Gene Ther ; 30(1): 10-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003813

RESUMO

Peptide infusions of peptides the corticotropin releasing factor family, including urocortin 2, stresscopin, and urocortin 3 (UCn3), have favorable acute effects in clinical heart failure (HF), but their short half-lives make them unsuitable for chronic therapy. This study asked whether UCn3 gene transfer, which provides sustained elevation of plasma UCn3 levels, increases the function of the failing heart. HF was induced by transmural left ventricular (LV) cryoinjury in mice. LV function was assessed 3 weeks later by echocardiography. Those with ejection fractions (EF) <40% received intravenous saline or intravenous adeno-associated virus type-8 encoding murine UCn3 (AAV8.mUCn3; 1.9 × 1013 genome copies/kg). Five weeks after randomization, repeat echocardiography, assessment of LV function (+dP/dt, -dP/dt), and quantification of Ca2+ transients and sarcomere shortening in isolated cardiac myocytes were conducted, and assessment of LV Ca2+ handling and stress proteins was performed. Three weeks after myocardial infarction, prior to treatment, EFs were reduced (mean 31%, from 63% in sham-operated animals). Mice randomized to receive UCn3 gene transfer showed increased plasma UCn3 (from 0.1 ± 0.01 ng/mL in the saline group to 5.6 ± 1.1 ng/mL; n = 12 each group; p < 0.0001). Compared to mice that received saline, UCn3 gene transfer was associated with higher values for EF (p = 0.0006); LV +dP/dt (p < 0.0001), and LV -dP/dt (p < 0.0001). Cardiac myocytes from mice that received UCn3 gene transfer showed higher peak Ca2+ transients (p = 0.0005), lower time constant of cytosolic Ca2+ decline (tau, p < 0.0001), and higher rates of sarcomere shortening (+dL/dt, p = 0.03) and lengthening (-dL/dt, p = 0.04). LV samples from mice that received UCn3 gene transfer contained higher levels of SERCA2a (p = 0.0004 vs. HF) and increased amounts of phosphorylated troponin I (p = 0.04 vs. HF). UCn3 gene transfer is associated with improved Ca2+ handling and LV function in mice with HF and reduced EF.


Assuntos
Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Transgenes , Urocortinas/genética , Animais , Apoptose , Biomarcadores , Cálcio/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Ecocardiografia , Feminino , Fibrose , Ordem dos Genes , Vetores Genéticos/genética , Insuficiência Cardíaca/diagnóstico , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Transdução Genética , Função Ventricular Esquerda/genética
19.
Biochem Biophys Res Commun ; 377(2): 679-684, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18948082

RESUMO

The heterotrimeric guanine nucleotide-binding protein Galphaq transduces signals from heptahelical transmembrane receptors (e.g., alpha(1)-adrenergic, endothelin 1A, and angiotensin II) to stimulate generation of inositol-1,4,5-trisphosphate and diacylglycerol. In addition, Galphaq decreases cAMP production, through unknown mechanisms, and thus affects physiological responsiveness of cardiac myocytes and other cells. Here, we provide evidence that Galphaq expression increases Galphas ubiquitination, decreases Galphas protein content, and impairs basal and beta(1)-adrenergic receptor-stimulated cAMP production. These biochemical and functional changes are associated with Akt activation. Expression of constitutively active Akt also decreases Galphas protein content and inhibits basal and beta(1)-adrenergic receptor-stimulated cAMP production. Akt knockdown inhibits Galphaq-induced reduction of Galphas protein. In addition, MDM2, an E3 ubiquitin ligase, binds Galphas and promotes its degradation. Therefore, increased expression of Galphaq decreases cAMP production through Akt-mediated Galphas protein ubiquitination and proteasomal degradation.


Assuntos
AMP Cíclico/biossíntese , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Animais , Ativação Enzimática , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Camundongos , Camundongos Transgênicos , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , RNA Mensageiro/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ubiquitinação
20.
FASEB J ; 21(11): 2970-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17470567

RESUMO

Vasoconstriction and vascular medial hypertrophy, resulting from increased intracellular [Ca2+] in pulmonary artery smooth muscle cells (PASMC), contribute to elevated vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Caveolae, microdomains within the plasma membrane, contain the protein caveolin, which binds certain signaling molecules. We tested the hypothesis that PASMC from IPAH patients express more caveolin-1 (Cav-1) and caveolae, which contribute to increased capacitative Ca2+ entry (CCE) and DNA synthesis. Immunohistochemistry showed increased expression of Cav-1 in smooth muscle cells but not endothelial cells of pulmonary arteries from patients with IPAH. Subcellular fractionation and electron microscopy confirmed the increase in Cav-1 and caveolae expression in IPAH-PASMC. Treatment of IPAH-PASMC with agents that deplete membrane cholesterol (methyl-beta-cyclodextrin or lovastatin) disrupted caveolae, attenuated CCE, and inhibited DNA synthesis of IPAH-PASMC. Increasing Cav-1 expression of normal PASMC with a Cav-1-encoding adenovirus increased caveolae formation, CCE, and DNA synthesis; treatment of IPAH-PASMC with siRNA targeted to Cav-1 produced the opposite effects. Treatments that down-regulate caveolin/caveolae expression, including cholesterol-lowering drugs, reversed the increased CCE and DNA synthesis in IPAH-PASMC. Increased caveolin and caveolae expression thus contribute to IPAH-PASMC pathophysiology. The close relationship between caveolin/caveolae expression and altered cell physiology in IPAH contrast with previous results obtained in various animal models, including caveolin-knockout mice, thus emphasizing unique features of the human disease. The results imply that disruption of caveolae in PASMC may provide a novel therapeutic approach to attenuate disease manifestations of IPAH.


Assuntos
Cavéolas/metabolismo , Caveolina 1/metabolismo , Hipertensão Pulmonar/fisiopatologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/fisiopatologia , Adenoviridae/genética , Cálcio/metabolismo , Sinalização do Cálcio , Cavéolas/patologia , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Proliferação de Células , Células Cultivadas , Imunofluorescência , Humanos , Immunoblotting , Lovastatina/farmacologia , Miócitos de Músculo Liso/citologia , RNA Interferente Pequeno/farmacologia , Transdução de Sinais , Canais de Cátion TRPC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA