Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38905308

RESUMO

Histone demethylase JMJD2D (also known as KDM4D) can specifically demethylate H3K9me2/3 to activate its target gene expression. Our previous study has demonstrated that JMJD2D can protect intestine from dextran sulfate sodium (DSS)-induced colitis by activating Hedgehog signaling; however, its involvement in host defense against enteric attaching and effacing bacterial infection remains unclear. The present study was aimed to investigate the role of JMJD2D in host defense against enteric bacteria and its underlying mechanisms. The enteric pathogen Citrobacter rodentium (C. rodentium) model was used to mimic clinical colonic infection. The responses of wild-type and JMJD2D-/- mice to oral infection of C. rodentium were investigated. Bone marrow chimeric mice were infected with C. rodentium. JMJD2D expression was knocked down in CMT93 cells by using small hairpin RNAs, and Western blot and real-time PCR assays were performed in these cells. The relationship between JMJD2D and STAT3 was studied by co-immunoprecipitation and chromatin immunoprecipitation. JMJD2D was significantly up-regulated in colonic epithelial cells of mice in response to Citrobacter rodentium infection. JMJD2D-/- mice displayed an impaired clearance of C. rodentium, more body weight loss, and more severe colonic tissue pathology compared with wild-type mice. JMJD2D-/- mice exhibited an impaired expression of IL-17F in the colonic epithelial cells, which restricts C. rodentium infection by inducing the expression of antimicrobial peptides. Accordingly, JMJD2D-/- mice showed a decreased expression of ß-defensin-1, ß-defensin-3, and ß-defensin-4 in the colonic epithelial cells. Mechanistically, JMJD2D activated STAT3 signaling by inducing STAT3 phosphorylation and cooperated with STAT3 to induce IL-17F expression by interacting with STAT3 and been recruited to the IL-17F promoter to demethylate H3K9me3. Our study demonstrates that JMJD2D contributes to host defense against enteric bacteria through up-regulating IL-17F to induce ß-defensin expression.


Assuntos
Citrobacter rodentium , Colo , Infecções por Enterobacteriaceae , Interleucina-17 , Histona Desmetilases com o Domínio Jumonji , Camundongos Knockout , Regulação para Cima , beta-Defensinas , Animais , Camundongos , beta-Defensinas/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/imunologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Interleucina-17/metabolismo , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Camundongos Endogâmicos C57BL , Colite/metabolismo , Colite/microbiologia , Fator de Transcrição STAT3/metabolismo
2.
J Cell Mol Med ; 28(7): e18171, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506084

RESUMO

SRC-1 functions as a transcriptional coactivator for steroid receptors and various transcriptional factors. Notably, SRC-1 has been implicated in oncogenic roles in multiple cancers, including breast cancer and prostate cancer. Previous investigations from our laboratory have established the high expression of SRC-1 in human HCC specimens, where it accelerates HCC progression by enhancing Wnt/beta-catenin signalling. In this study, we uncover a previously unknown role of SRC-1 in HCC metastasis. Our findings reveal that SRC-1 promotes HCC metastasis through the augmentation of MMP-9 expression. The knockdown of SRC-1 effectively mitigated HCC cell metastasis both in vitro and in vivo by suppressing MMP-9 expression. Furthermore, we observed a positive correlation between SRC-1 mRNA levels and MMP-9 mRNA levels in limited and larger cohorts of HCC specimens from GEO database. Mechanistically, SRC-1 operates as a coactivator for NF-κB and AP-1, enhancing MMP-9 promoter activity in HCC cells. Higher levels of SRC-1 and MMP-9 expression are associated with worse overall survival in HCC patients. Treatment with Bufalin, known to inhibit SRC-1 expression, significantly decreased MMP-9 expression and inhibited HCC metastasis in both in vitro and in vivo settings. Our results demonstrated the pivotal role of SRC-1 as a critical modulator in HCC metastasis, presenting a potential therapeutic target for HCC intervention.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , RNA Mensageiro , Invasividade Neoplásica/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
3.
Cell Biosci ; 14(1): 41, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553750

RESUMO

Steroid receptor coactivator-1 (SRC-1, also known as NCOA1) frequently functions as a transcriptional coactivator by directly binding to transcription factors and recruiting to the target gene promoters to promote gene transcription by increasing chromatin accessibility and promoting the formation of transcriptional complexes. In recent decades, various biological and pathological functions of SRC-1 have been reported, especially in the context of tumorigenesis. SRC-1 is a facilitator of the progression of multiple cancers, including breast cancer, prostate cancer, gastrointestinal cancer, neurological cancer, and female genital system cancer. The emerging multiorgan oncogenic role of SRC-1 is still being studied and may not be limited to only steroid hormone-producing tissues. Growing evidence suggests that SRC-1 promotes target gene expression by directly binding to transcription factors, which may constitute a novel coactivation pattern independent of AR or ER. In addition, the antitumour effect of pharmacological inhibition of SRC-1 with agents including various small molecules or naturally active compounds has been reported, but their practical application in clinical cancer therapy is very limited. For this review, we gathered typical evidence on the oncogenic role of SRC-1, highlighted its major collaborators and regulatory genes, and mapped the potential mechanisms by which SRC-1 promotes primary tumour progression.

4.
J Pharm Anal ; 14(4): 100915, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634065

RESUMO

Pien Tze Huang (PZH), a class I nationally protected traditional Chinese medicine (TCM), has been used to treat liver diseases such as hepatitis; however, the effect of PZH on the progression of sepsis is unknown. Here, we reported that PZH attenuated lipopolysaccharide (LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signalling. Mechanistically, PZH stimulated signal transducer and activator of transcription 3 (STAT3) phosphorylation to induce the expression of A20, which could inhibit the activation of NF-κB and MAPK signalling. Knockdown of the bile acid (BA) receptor G protein-coupled bile acid receptor 1 (TGR5) in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction, as well as the LPS-induced inflammatory response, suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5. Consistently, deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20, the activation of NF-κB and MAPK signalling, and the production of proinflammatory cytokines, whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines. Overall, our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.

5.
J Pharm Biomed Anal ; 245: 116197, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723558

RESUMO

The dysregulated levels of branched chain amino acids (BCAA) contribute to renal fibrosis in chronic kidney disease (CKD), yet specific analysis of BCAA contents and how they are regulated still remain unclear. It is therefore of great scientific interest to understand BCAA catabolism in CKD and develop a sensitive method for simultaneous determination of individual BCAA and their metabolites branched chain α-ketoacids (BCKA). In this work, the important role of BCAA metabolism that drives renal fibrosis in the process of CKD was first revealed by using transcriptomics. The key target genes controlling BCAA metabolism were then validated, that is, mRNA levels of BCKDHA and BCKDHB, the regulating rate-limiting enzymes during BCAA metabolism were abnormally reduced by quantitative PCR (qPCR), and a similar drop-off trend of protein expression of BCKDH, HIBCH and MCCC2 that are closely related to BCAA metabolism was also confirmed by western blotting. Furthermore, we established a novel strategy that simultaneously determines 6 individual BCAA and BCKA in serum and tissue. The method based on dansylhydrazine derivatization and ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QQQ-MS) achieved to simultaneously determine the contents of BCAA and BCKA, which is efficient and stable. Compared with normal rats, levels of BCAA including leucine, isoleucine and valine in serum and kidney of CKD rats was decreased, while BCKA including α-ketoisocaproic acid, α-ketomethylvaleric acid and α-ketoisovaleric acid was increased. Together, these findings revealed the abnormality of BCAA metabolism in driving the course of kidney fibrosis and CKD. Our current study sheds new light on changes in BCAA metabolism during CKD, and may facilitate development of drugs to treat CKD and renal fibrosis.


Assuntos
Aminoácidos de Cadeia Ramificada , Fibrose , Rim , Ratos Sprague-Dawley , Insuficiência Renal Crônica , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , Ratos , Masculino , Cromatografia Líquida de Alta Pressão/métodos , Fibrose/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Rim/metabolismo , Rim/patologia , Cetoácidos/metabolismo , Transcriptoma , Espectrometria de Massas em Tandem/métodos , Perfilação da Expressão Gênica/métodos
6.
J Ethnopharmacol ; 335: 118607, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069029

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jian-Pi-Yi-Shen (JPYS) formula is an effective herbal therapy against renal injury, and JPYS has been clinically applied to ameliorate chronic kidney disease (CKD) and CKD-associated anemia. Increasing evidence supports the link between renal fibrosis and anemia in CKD. JPYS possessed anti-fibrosis effects in experimental CKD. Nevertheless, research on the mechanisms of JPYS in ameliorating renal anemia (RA) through suppressing renal fibrosis remains to be clarified. AIM OF THE STUDY: Our study here was carried out to investigate the mechanisms of JPYS in protecting against RA. MATERIALS AND METHODS: An adenine-induced anemia model in rats with CKD at three different time points was established, and bio-samples taken from each group were analyzed. Biochemical analysis was employed to detect kidney function and hematological parameters. Masson staining was used to evaluate renal fibrosis of rats. Western blot and immunohistochemistry were utilized to evaluate the expressions of fibrotic markers, erythropoietin (EPO) and hypoxia inducible factor-2α (HIF-2α) in the kidneys of rats. Subsequently, transcriptomic analysis was conducted to disclose the possible mechanisms of JPYS in treating RA. Finally, the expression levels of key targets were analyzed and validated by using Western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS: JPYS treatment improved kidney function, suppressed renal fibrosis and enhanced hematological parameters in CKD rats. Moreover, JPYS treatment restored the increased expression levels of fibrotic markers and the declined EPO with time dependence. In parallel, data indicated JPYS treatment stimulated the translocation of HIF-2α into nucleus in the renal interstitium and thus promoted the expression of EPO. Transcriptomic profiling disclosed that activations of both nuclear factor kappa B (NF-κB) and transforming growth factor-ß (TGF-ß)/Smad pathways were closely associated with RA. Ultimately, experimental validation results presented that the increased expressions of target proteins from the above-mentioned two pathways in the kidneys were decreased significantly after JPYS treatment. CONCLUSION: Our findings suggest that JPYS may improve RA by alleviating renal fibrosis, and the mechanisms of which involve in inhibiting the NF-κB and TGF-ß/Smad pathways.

7.
Adv Sci (Weinh) ; : e2310037, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953362

RESUMO

Programmed death-ligand 1 (PD-L1) is overexpressed in multiple cancers and critical for their immune escape. It has previously shown that the nuclear coactivator SRC-1 promoted colorectal cancer (CRC) progression by enhancing CRC cell viability, yet its role in CRC immune escape is unclear. Here, we demonstrate that SRC-1 is positively correlated with PD-L1 in human CRC specimens. SRC-1 deficiency significantly inhibits PD-L1 expression in CRC cells and retards murine CRC growth in subcutaneous grafts by enhancing CRC immune escape via increasing tumor infiltration of CD8+ T cells. Genetic ablation of SRC-1 in mice also decreases PD-L1 expression in AOM/DSS-induced murine CRC. These results suggest that tumor-derived SRC-1 promotes CRC immune escape by enhancing PD-L1 expression. Mechanistically, SRC-1 activated JAK-STAT signaling by inhibiting SOCS1 expression and coactivated STAT3 and IRF1 to enhance PD-L1 transcription as well as stabilized PD-L1 protein by inhibiting proteasome-dependent degradation mediated by speckle type POZ protein (SPOP). Pharmacological inhibition of SRC-1 improved the antitumor effect of PD-L1 antibody in both subcutaneous graft and AOM/DSS-induced murine CRC models. Taken together, these findings highlight a crucial role of SRC-1 in regulating PD-L1 expression and targeting SRC-1 in combination with PD-L1 antibody immunotherapy may be an attractive strategy for CRC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA