Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Brain Mapp ; 44(4): 1579-1592, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440953

RESUMO

This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions. Unfavorable outcome (mRS > 2) was modeled in a Bayesian logistic regression framework. Effects of individual brain regions were captured as two compound effects for (i) six bilateral rich club and (ii) all further non-rich club regions. In spatial specificity analyses, we randomized the split into "rich club" and "non-rich club" regions and compared the effect of the actual rich club regions to the distribution of effects from 1000 combinations of six random regions. In sex-specific analyses, we introduced an additional hierarchical level in our model structure to compare male and female-specific rich club effects. A total of 822 patients (age: 64.7[15.0], 39% women) were analyzed. Rich club regions had substantial relevance in explaining unfavorable functional outcome (mean of posterior distribution: 0.08, area under the curve: 0.8). In particular, the rich club-combination had a higher relevance than 98.4% of random constellations. Rich club regions were substantially more important in explaining long-term outcome in women than in men. All in all, lesions in rich club regions were associated with increased odds of unfavorable outcome. These effects were spatially specific and more pronounced in women.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Teorema de Bayes , Encéfalo , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/patologia , Modelos Neurológicos
2.
Stroke ; 50(7): 1734-1741, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31177973

RESUMO

Background and Purpose- We evaluated deep learning algorithms' segmentation of acute ischemic lesions on heterogeneous multi-center clinical diffusion-weighted magnetic resonance imaging (MRI) data sets and explored the potential role of this tool for phenotyping acute ischemic stroke. Methods- Ischemic stroke data sets from the MRI-GENIE (MRI-Genetics Interface Exploration) repository consisting of 12 international genetic research centers were retrospectively analyzed using an automated deep learning segmentation algorithm consisting of an ensemble of 3-dimensional convolutional neural networks. Three ensembles were trained using data from the following: (1) 267 patients from an independent single-center cohort, (2) 267 patients from MRI-GENIE, and (3) mixture of (1) and (2). The algorithms' performances were compared against manual outlines from a separate 383 patient subset from MRI-GENIE. Univariable and multivariable logistic regression with respect to demographics, stroke subtypes, and vascular risk factors were performed to identify phenotypes associated with large acute diffusion-weighted MRI volumes and greater stroke severity in 2770 MRI-GENIE patients. Stroke topography was investigated. Results- The ensemble consisting of a mixture of MRI-GENIE and single-center convolutional neural networks performed best. Subset analysis comparing automated and manual lesion volumes in 383 patients found excellent correlation (ρ=0.92; P<0.0001). Median (interquartile range) diffusion-weighted MRI lesion volumes from 2770 patients were 3.7 cm3 (0.9-16.6 cm3). Patients with small artery occlusion stroke subtype had smaller lesion volumes ( P<0.0001) and different topography compared with other stroke subtypes. Conclusions- Automated accurate clinical diffusion-weighted MRI lesion segmentation using deep learning algorithms trained with multi-center and diverse data is feasible. Both lesion volume and topography can provide insight into stroke subtypes with sufficient sample size from big heterogeneous multi-center clinical imaging phenotype data sets.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Big Data , Isquemia Encefálica/epidemiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Variações Dependentes do Observador , Fenótipo , Estudos Retrospectivos , Fatores de Risco , Fatores Socioeconômicos , Acidente Vascular Cerebral/epidemiologia
3.
Stroke ; 46(9): 2438-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26199314

RESUMO

BACKGROUND AND PURPOSE: Acute infarct volume, often proposed as a biomarker for evaluating novel interventions for acute ischemic stroke, correlates only moderately with traditional clinical end points, such as the modified Rankin Scale. We hypothesized that the topography of acute stroke lesions on diffusion-weighted magnetic resonance imaging may provide further information with regard to presenting stroke severity and long-term functional outcomes. METHODS: Data from a prospective stroke repository were limited to acute ischemic stroke subjects with magnetic resonance imaging completed within 48 hours from last known well, admission NIH Stroke Scale (NIHSS), and 3-to-6 months modified Rankin Scale scores. Using voxel-based lesion symptom mapping techniques, including age, sex, and diffusion-weighted magnetic resonance imaging lesion volume as covariates, statistical maps were calculated to determine the significance of lesion location for clinical outcome and admission stroke severity. RESULTS: Four hundred ninety subjects were analyzed. Acute stroke lesions in the left hemisphere were associated with more severe NIHSS at admission and poor modified Rankin Scale at 3 to 6 months. Specifically, injury to white matter (corona radiata, internal and external capsules, superior longitudinal fasciculus, and uncinate fasciculus), postcentral gyrus, putamen, and operculum were implicated in poor modified Rankin Scale. More severe NIHSS involved these regions, as well as the amygdala, caudate, pallidum, inferior frontal gyrus, insula, and precentral gyrus. CONCLUSIONS: Acute lesion topography provides important insights into anatomic correlates of admission stroke severity and poststroke outcomes. Future models that account for infarct location in addition to diffusion-weighted magnetic resonance imaging volume may improve stroke outcome prediction and identify patients likely to benefit from aggressive acute intervention and personalized rehabilitation strategies.


Assuntos
Isquemia Encefálica/patologia , Avaliação de Resultados em Cuidados de Saúde , Índice de Gravidade de Doença , Acidente Vascular Cerebral/patologia , Idoso , Idoso de 80 Anos ou mais , Isquemia Encefálica/fisiopatologia , Imagem de Difusão por Ressonância Magnética , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo
4.
Neurology ; 99(13): e1364-e1379, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35803717

RESUMO

BACKGROUND AND OBJECTIVES: To examine whether high white matter hyperintensity (WMH) burden is associated with greater stroke severity and worse functional outcomes in lesion pattern-specific ways. METHODS: MR neuroimaging and NIH Stroke Scale data at index stroke and the modified Rankin Scale (mRS) score at 3-6 months after stroke were obtained from the MRI-Genetics Interface Exploration study of patients with acute ischemic stroke (AIS). Individual WMH volume was automatically derived from fluid-attenuated inversion recovery images. Stroke lesions were automatically segmented from diffusion-weighted imaging (DWI) images, parcellated into atlas-defined brain regions and further condensed to 10 lesion patterns via machine learning-based dimensionality reduction. Stroke lesion effects on AIS severity and unfavorable outcomes (mRS score >2) were modeled within purpose-built Bayesian linear and logistic regression frameworks. Interaction effects between stroke lesions and a high vs low WMH burden were integrated via hierarchical model structures. Models were adjusted for age, age2, sex, total DWI lesion and WMH volumes, and comorbidities. Data were split into derivation and validation cohorts. RESULTS: A total of 928 patients with AIS contributed to acute stroke severity analyses (age: 64.8 [14.5] years, 40% women) and 698 patients to long-term functional outcome analyses (age: 65.9 [14.7] years, 41% women). Stroke severity was mainly explained by lesions focused on bilateral subcortical and left hemispherically pronounced cortical regions across patients with both a high and low WMH burden. Lesions centered on left-hemispheric insular, opercular, and inferior frontal regions and lesions affecting right-hemispheric temporoparietal regions had more pronounced effects on stroke severity in case of high compared with low WMH burden. Unfavorable outcomes were predominantly explained by lesions in bilateral subcortical regions. In difference to the lesion location-specific WMH effects on stroke severity, higher WMH burden increased the odds of unfavorable outcomes independent of lesion location. DISCUSSION: Higher WMH burden may be associated with an increased stroke severity in case of stroke lesions involving left-hemispheric insular, opercular, and inferior frontal regions (potentially linked to language functions) and right-hemispheric temporoparietal regions (potentially linked to attention). Our findings suggest that patients with specific constellations of WMH burden and lesion locations may have greater benefits from acute recanalization treatments. Future clinical studies are warranted to systematically assess this assumption and guide more tailored treatment decisions.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Leucoaraiose , Acidente Vascular Cerebral , Substância Branca , Idoso , Teorema de Bayes , Feminino , Humanos , Leucoaraiose/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Substância Branca/patologia
5.
Front Neurosci ; 16: 994458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090258

RESUMO

Background purpose: A substantial number of patients with acute ischemic stroke (AIS) experience multiple acute lesions (MAL). We here aimed to scrutinize MAL in a large radiologically deep-phenotyped cohort. Materials and methods: Analyses relied upon imaging and clinical data from the international MRI-GENIE study. Imaging data comprised both Fluid-attenuated inversion recovery (FLAIR) for white matter hyperintensity (WMH) burden estimation and diffusion-weighted imaging (DWI) sequences for the assessment of acute stroke lesions. The initial step featured the systematic evaluation of occurrences of MAL within one and several vascular supply territories. Associations between MAL and important imaging and clinical characteristics were subsequently determined. The interaction effect between single and multiple lesion status and lesion volume was estimated by means of Bayesian hierarchical regression modeling for both stroke severity and functional outcome. Results: We analyzed 2,466 patients (age = 63.4 ± 14.8, 39% women), 49.7% of which presented with a single lesion. Another 37.4% experienced MAL in a single vascular territory, while 12.9% featured lesions in multiple vascular territories. Within most territories, MAL occurred as frequently as single lesions (ratio ∼1:1). Only the brainstem region comprised fewer patients with MAL (ratio 1:4). Patients with MAL presented with a significantly higher lesion volume and acute NIHSS (7.7 vs. 1.7 ml and 4 vs. 3, p FDR < 0.001). In contrast, patients with a single lesion were characterized by a significantly higher WMH burden (6.1 vs. 5.3 ml, p FDR = 0.048). Functional outcome did not differ significantly between patients with single versus multiple lesions. Bayesian analyses suggested that the association between lesion volume and stroke severity between single and multiple lesions was the same in case of anterior circulation stroke. In case of posterior circulation stroke, lesion volume was linked to a higher NIHSS only among those with MAL. Conclusion: Multiple lesions, especially those within one vascular territory, occurred more frequently than previously reported. Overall, multiple lesions were distinctly linked to a higher acute stroke severity, a higher total DWI lesion volume and a lower WMH lesion volume. In posterior circulation stroke, lesion volume was linked to a higher stroke severity in multiple lesions only.

6.
Brain Commun ; 4(2): fcac020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35282166

RESUMO

Stroke represents a considerable burden of disease for both men and women. However, a growing body of literature suggests clinically relevant sex differences in the underlying causes, presentations and outcomes of acute ischaemic stroke. In a recent study, we reported sex divergences in lesion topographies: specific to women, acute stroke severity was linked to lesions in the left-hemispheric posterior circulation. We here determined whether these sex-specific brain manifestations also affect long-term outcomes. We relied on 822 acute ischaemic patients [age: 64.7 (15.0) years, 39% women] originating from the multi-centre MRI-GENIE study to model unfavourable outcomes (modified Rankin Scale >2) based on acute neuroimaging data in a Bayesian hierarchical framework. Lesions encompassing bilateral subcortical nuclei and left-lateralized regions in proximity to the insula explained outcomes across men and women (area under the curve = 0.81). A pattern of left-hemispheric posterior circulation brain regions, combining left hippocampus, precuneus, fusiform and lingual gyrus, occipital pole and latero-occipital cortex, showed a substantially higher relevance in explaining functional outcomes in women compared to men [mean difference of Bayesian posterior distributions (men - women) = -0.295 (90% highest posterior density interval = -0.556 to -0.068)]. Once validated in prospective studies, our findings may motivate a sex-specific approach to clinical stroke management and hold the promise of enhancing outcomes on a population level.

7.
Nat Commun ; 12(1): 3289, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078897

RESUMO

Acute ischemic stroke affects men and women differently. In particular, women are often reported to experience higher acute stroke severity than men. We derived a low-dimensional representation of anatomical stroke lesions and designed a Bayesian hierarchical modeling framework tailored to estimate possible sex differences in lesion patterns linked to acute stroke severity (National Institute of Health Stroke Scale). This framework was developed in 555 patients (38% female). Findings were validated in an independent cohort (n = 503, 41% female). Here, we show brain lesions in regions subserving motor and language functions help explain stroke severity in both men and women, however more widespread lesion patterns are relevant in female patients. Higher stroke severity in women, but not men, is associated with left hemisphere lesions in the vicinity of the posterior circulation. Our results suggest there are sex-specific functional cerebral asymmetries that may be important for future investigations of sex-stratified approaches to management of acute ischemic stroke.


Assuntos
Tronco Encefálico/patologia , AVC Isquêmico/patologia , Córtex Sensório-Motor/patologia , Tálamo/patologia , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Mapeamento Encefálico , Tronco Encefálico/irrigação sanguínea , Tronco Encefálico/diagnóstico por imagem , Revascularização Cerebral/métodos , Estudos de Coortes , Feminino , Humanos , Processamento de Imagem Assistida por Computador , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/terapia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Córtex Sensório-Motor/irrigação sanguínea , Córtex Sensório-Motor/diagnóstico por imagem , Índice de Gravidade de Doença , Fatores Sexuais , Tálamo/irrigação sanguínea , Tálamo/diagnóstico por imagem , Resultado do Tratamento
8.
Front Neurol ; 12: 700616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566844

RESUMO

Objective: To personalize the prognostication of post-stroke outcome using MRI-detected cerebrovascular pathology, we sought to investigate the association between the excessive white matter hyperintensity (WMH) burden unaccounted for by the traditional stroke risk profile of individual patients and their long-term functional outcomes after a stroke. Methods: We included 890 patients who survived after an acute ischemic stroke from the MRI-Genetics Interface Exploration (MRI-GENIE) study, for whom data on vascular risk factors (VRFs), including age, sex, atrial fibrillation, diabetes mellitus, hypertension, coronary artery disease, smoking, prior stroke history, as well as acute stroke severity, 3- to-6-month modified Rankin Scale score (mRS), WMH, and brain volumes, were available. We defined the unaccounted WMH (uWMH) burden via modeling of expected WMH burden based on the VRF profile of each individual patient. The association of uWMH and mRS score was analyzed by linear regression analysis. The odds ratios of patients who achieved full functional independence (mRS < 2) in between trichotomized uWMH burden groups were calculated by pair-wise comparisons. Results: The expected WMH volume was estimated with respect to known VRFs. The uWMH burden was associated with a long-term functional outcome (ß = 0.104, p < 0.01). Excessive uWMH burden significantly reduced the odds of achieving full functional independence after a stroke compared to the low and average uWMH burden [OR = 0.4, 95% CI: (0.25, 0.63), p < 0.01 and OR = 0.61, 95% CI: (0.42, 0.87), p < 0.01, respectively]. Conclusion: The excessive amount of uWMH burden unaccounted for by the traditional VRF profile was associated with worse post-stroke functional outcomes. Further studies are needed to evaluate a lifetime brain injury reflected in WMH unrelated to the VRF profile of a patient as an important factor for stroke recovery and a plausible indicator of brain health.

9.
Mayo Clin Proc ; 95(5): 955-965, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32370856

RESUMO

OBJECTIVE: To determine whether brain volume is associated with functional outcome after acute ischemic stroke (AIS). PATIENTS AND METHODS: This study was conducted between July 1, 2014, and March 16, 2019. We analyzed cross-sectional data of the multisite, international hospital-based MRI-Genetics Interface Exploration study with clinical brain magnetic resonance imaging obtained on admission for index stroke and functional outcome assessment. Poststroke outcome was determined using the modified Rankin Scale score (0-6; 0 = asymptomatic; 6 = death) recorded between 60 and 190 days after stroke. Demographic characteristics and other clinical variables including acute stroke severity (measured as National Institutes of Health Stroke Scale score), vascular risk factors, and etiologic stroke subtypes (Causative Classification of Stroke system) were recorded during index admission. RESULTS: Utilizing the data from 912 patients with AIS (mean ± SD age, 65.3±14.5 years; male, 532 [58.3%]; history of smoking, 519 [56.9%]; hypertension, 595 [65.2%]) in a generalized linear model, brain volume (per 155.1 cm3) was associated with age (ß -0.3 [per 14.4 years]), male sex (ß 1.0), and prior stroke (ß -0.2). In the multivariable outcome model, brain volume was an independent predictor of modified Rankin Scale score (ß -0.233), with reduced odds of worse long-term functional outcomes (odds ratio, 0.8; 95% CI, 0.7-0.9) in those with larger brain volumes. CONCLUSION: Larger brain volume quantified on clinical magnetic resonance imaging of patients with AIS at the time of stroke purports a protective mechanism. The role of brain volume as a prognostic, protective biomarker has the potential to forge new areas of research and advance current knowledge of the mechanisms of poststroke recovery.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/fisiopatologia , Idoso , Isquemia Encefálica/complicações , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/etiologia
10.
Neurology ; 95(1): e79-e88, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32493718

RESUMO

OBJECTIVE: To examine etiologic stroke subtypes and vascular risk factor profiles and their association with white matter hyperintensity (WMH) burden in patients hospitalized for acute ischemic stroke (AIS). METHODS: For the MRI Genetics Interface Exploration (MRI-GENIE) study, we systematically assembled brain imaging and phenotypic data for 3,301 patients with AIS. All cases underwent standardized web tool-based stroke subtyping with the Causative Classification of Ischemic Stroke (CCS). WMH volume (WMHv) was measured on T2 brain MRI scans of 2,529 patients with a fully automated deep-learning trained algorithm. Univariable and multivariable linear mixed-effects modeling was carried out to investigate the relationship of vascular risk factors with WMHv and CCS subtypes. RESULTS: Patients with AIS with large artery atherosclerosis, major cardioembolic stroke, small artery occlusion (SAO), other, and undetermined causes of AIS differed significantly in their vascular risk factor profile (all p < 0.001). Median WMHv in all patients with AIS was 5.86 cm3 (interquartile range 2.18-14.61 cm3) and differed significantly across CCS subtypes (p < 0.0001). In multivariable analysis, age, hypertension, prior stroke, smoking (all p < 0.001), and diabetes mellitus (p = 0.041) were independent predictors of WMHv. When adjusted for confounders, patients with SAO had significantly higher WMHv compared to those with all other stroke subtypes (p < 0.001). CONCLUSION: In this international multicenter, hospital-based cohort of patients with AIS, we demonstrate that vascular risk factor profiles and extent of WMH burden differ by CCS subtype, with the highest lesion burden detected in patients with SAO. These findings further support the small vessel hypothesis of WMH lesions detected on brain MRI of patients with ischemic stroke.


Assuntos
Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Arteriopatias Oclusivas/complicações , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/etiologia , Isquemia Encefálica/patologia , Aprendizado Profundo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
11.
Front Neurol ; 11: 577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670186

RESUMO

Background: Magnetic resonance imaging (MRI) serves as a cornerstone in defining stroke phenotype and etiological subtype through examination of ischemic stroke lesion appearance and is therefore an essential tool in linking genetic traits and stroke. Building on baseline MRI examinations from the centralized and structured radiological assessments of ischemic stroke patients in the Stroke Genetics Network, the results of the MRI-Genetics Interface Exploration (MRI-GENIE) study are described in this work. Methods: The MRI-GENIE study included patients with symptoms caused by ischemic stroke (N = 3,301) from 12 international centers. We established and used a structured reporting protocol for all assessments. Two neuroradiologists, using a blinded evaluation protocol, independently reviewed the baseline diffusion-weighted images (DWIs) and magnetic resonance angiography images to determine acute lesion and vascular occlusion characteristics. Results: In this systematic multicenter radiological analysis of clinical MRI from 3,301 acute ischemic stroke patients according to a structured prespecified protocol, we identified that anterior circulation infarcts were most prevalent (67.4%), that infarcts in the middle cerebral artery (MCA) territory were the most common, and that the majority of large artery occlusions 0 to 48 h from ictus were in the MCA territory. Multiple acute lesions in one or several vascular territories were common (11%). Of 2,238 patients with unilateral DWI lesions, 52.6% had left-sided infarct lateralization (P = 0.013 for χ2 test). Conclusions: This large-scale analysis of a multicenter MRI-based cohort of AIS patients presents a unique imaging framework facilitating the relationship between imaging and genetics for advancing the knowledge of genetic traits linked to ischemic stroke.

12.
Neuroimage Clin ; 23: 101884, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31200151

RESUMO

White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype linked to prediction of diagnosis and prognosis of diseases, such as acute ischemic stroke (AIS). However, current approaches to its quantification on clinical MRI often rely on time intensive manual delineation of the disease on T2 fluid attenuated inverse recovery (FLAIR), which hinders high-throughput analyses such as genetic discovery. In this work, we present a fully automated pipeline for quantification of WMH in clinical large-scale studies of AIS. The pipeline incorporates automated brain extraction, intensity normalization and WMH segmentation using spatial priors. We first propose a brain extraction algorithm based on a fully convolutional deep learning architecture, specifically designed for clinical FLAIR images. We demonstrate that our method for brain extraction outperforms two commonly used and publicly available methods on clinical quality images in a set of 144 subject scans across 12 acquisition centers, based on dice coefficient (median 0.95; inter-quartile range 0.94-0.95; p < 0.01) and Pearson correlation of total brain volume (r = 0.90). Subsequently, we apply it to the large-scale clinical multi-site MRI-GENIE study (N = 2783) and identify a decrease in total brain volume of -2.4 cc/year. Additionally, we show that the resulting total brain volumes can successfully be used for quality control of image preprocessing. Finally, we obtain WMH volumes by building on an existing automatic WMH segmentation algorithm that delineates and distinguishes between different cerebrovascular pathologies. The learning method mimics expert knowledge of the spatial distribution of the WMH burden using a convolutional auto-encoder. This enables successful computation of WMH volumes of 2533 clinical AIS patients. We utilize these results to demonstrate the increase of WMH burden with age (0.950 cc/year) and show that single site estimates can be biased by the number of subjects recruited.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Acidente Vascular Cerebral/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA