Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Cell ; 184(1): 226-242.e21, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33417860

RESUMO

Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Diapausa , Resistencia a Medicamentos Antineoplásicos , Animais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Células Clonais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell ; 177(1): 85-100, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901552

RESUMO

Genetic interactions identify combinations of genetic variants that impinge on phenotype. With whole-genome sequence information available for thousands of individuals within a species, a major outstanding issue concerns the interpretation of allelic combinations of genes underlying inherited traits. In this Review, we discuss how large-scale analyses in model systems have illuminated the general principles and phenotypic impact of genetic interactions. We focus on studies in budding yeast, including the mapping of a global genetic network. We emphasize how information gained from work in yeast translates to other systems, and how a global genetic network not only annotates gene function but also provides new insights into the genotype-to-phenotype relationship.


Assuntos
Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Estudos de Associação Genética/tendências , Alelos , Animais , Frequência do Gene/genética , Variação Genética/genética , Genótipo , Humanos , Modelos Genéticos , Fenótipo , Locos de Características Quantitativas/genética , Saccharomyces cerevisiae/genética
3.
Cell ; 164(1-2): 293-309, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771497

RESUMO

Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, including copy number alterations and point mutations. Still, identifying causal variants and emergent vulnerabilities that arise as a consequence of genetic alterations remain major challenges. We performed whole-genome small hairpin RNA (shRNA) "dropout screens" on 77 breast cancer cell lines. Using a hierarchical linear regression algorithm to score our screen results and integrate them with accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast cancer, including candidate "drivers," and reveal general functional genomic properties of cancer cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in luminal breast cancer and PIK3CA mutations as a resistance determinant for BET-inhibitors.


Assuntos
Algoritmos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Análise por Conglomerados , Resistencia a Medicamentos Antineoplásicos , Dosagem de Genes , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Modelos Lineares , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases , Fatores de Transcrição/genética
4.
Cell ; 162(2): 391-402, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186192

RESUMO

Many mutations cause genetic disorders. However, two people inheriting the same mutation often have different severity of symptoms, and this is partly genetic. The effects of genetic background on mutant phenotypes are poorly understood, but predicting them is critical for personalized medicine. To study this phenomenon comprehensively and systematically, we used RNAi to compare loss-of-function phenotypes for ∼1,400 genes in two isolates of C. elegans and find that ∼20% of genes differ in the severity of phenotypes in these two genetic backgrounds. Crucially, this effect of genetic background on the severity of both RNAi and mutant phenotypes can be predicted from variation in the expression levels of the affected gene. This is also true in mammalian cells, suggesting it is a general property of genetic networks. We suggest that differences in the manifestation of mutant phenotypes between individuals are largely the result of natural variation in gene expression.


Assuntos
Caenorhabditis elegans/genética , Mutação , Animais , Caenorhabditis elegans/classificação , Técnicas de Silenciamento de Genes , Variação Genética , Fenótipo , Interferência de RNA
5.
Cell ; 161(6): 1413-24, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046442

RESUMO

Proteomics has proved invaluable in generating large-scale quantitative data; however, the development of systems approaches for examining the proteome in vivo has lagged behind. To evaluate protein abundance and localization on a proteome scale, we exploited the yeast GFP-fusion collection in a pipeline combining automated genetics, high-throughput microscopy, and computational feature analysis. We developed an ensemble of binary classifiers to generate localization data from single-cell measurements and constructed maps of ∼3,000 proteins connected to 16 localization classes. To survey proteome dynamics in response to different chemical and genetic stimuli, we measure proteome-wide abundance and localization and identified changes over time. We analyzed >20 million cells to identify dynamic proteins that redistribute among multiple localizations in hydroxyurea, rapamycin, and in an rpd3Δ background. Because our localization and abundance data are quantitative, they provide the opportunity for many types of comparative studies, single cell analyses, modeling, and prediction. VIDEO ABSTRACT.


Assuntos
Proteoma/análise , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Máquina de Vetores de Suporte , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única
6.
Cell ; 163(6): 1515-26, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26627737

RESUMO

The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. Using an improved Bayesian analytical approach, we consistently discover 5-fold more fitness genes than were previously observed. We present a list of 1,580 human core fitness genes and describe their general properties. Moreover, we demonstrate that context-dependent fitness genes accurately recapitulate pathway-specific genetic vulnerabilities induced by known oncogenes and reveal cell-type-specific dependencies for specific receptor tyrosine kinases, even in oncogenic KRAS backgrounds. Thus, rigorous identification of human cell line fitness genes using a high-complexity CRISPR-Cas9 library affords a high-resolution view of the genetic vulnerabilities of a cell.


Assuntos
Genes Essenciais , Teorema de Bayes , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Biblioteca Gênica , Humanos , Mutação
7.
Cell ; 163(6): 1484-99, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26638075

RESUMO

The centrosome is the primary microtubule organizing center of the cells and templates the formation of cilia, thereby operating at a nexus of critical cellular functions. Here, we use proximity-dependent biotinylation (BioID) to map the centrosome-cilium interface; with 58 bait proteins we generate a protein topology network comprising >7,000 interactions. Analysis of interaction profiles coupled with high resolution phenotypic profiling implicates a number of protein modules in centriole duplication, ciliogenesis, and centriolar satellite biogenesis and highlights extensive interplay between these processes. By monitoring dynamic changes in the centrosome-cilium protein interaction landscape during ciliogenesis, we also identify satellite proteins that support cilia formation. Systematic profiling of proximity interactions combined with functional analysis thus provides a rich resource for better understanding human centrosome and cilia biology. Similar strategies may be applied to other complex biological structures or pathways.


Assuntos
Centrossomo/metabolismo , Cílios/metabolismo , Mapas de Interação de Proteínas , Biotinilação , Ciclo Celular , Humanos , Centro Organizador dos Microtúbulos/metabolismo
8.
Mol Cell ; 82(16): 2982-2999.e14, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35914530

RESUMO

Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.


Assuntos
Neurogênese , Splicing de RNA , Processamento Alternativo , Animais , Éxons/genética , Mamíferos , Camundongos , Neurogênese/genética , Neurônios , Proteínas de Ligação a RNA/genética
9.
Cell ; 152(5): 1008-20, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452850

RESUMO

Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.


Assuntos
Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteína SOS1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem da Célula , Endoderma/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
10.
Nature ; 600(7888): 324-328, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819670

RESUMO

Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.


Assuntos
Linfócitos B , DNA Glicosilases , Reparo de Erro de Pareamento de DNA , Switching de Imunoglobulina , Proteínas de Membrana , Mutação , Proteínas de Neoplasias , Hipermutação Somática de Imunoglobulina , Animais , Feminino , Humanos , Camundongos , Linfócitos B/metabolismo , Sistemas CRISPR-Cas , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/metabolismo , Epistasia Genética , Células HEK293 , Switching de Imunoglobulina/genética , Região de Troca de Imunoglobulinas/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Hipermutação Somática de Imunoglobulina/genética
11.
Nature ; 586(7827): 120-126, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32968282

RESUMO

The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood1-3. Here, to identify a phenotypically robust core set of genes and pathways that enable cancer cells to evade killing mediated by cytotoxic T lymphocytes (CTLs), we performed genome-wide CRISPR screens across a panel of genetically diverse mouse cancer cell lines that were cultured in the presence of CTLs. We identify a core set of 182 genes across these mouse cancer models, the individual perturbation of which increases either the sensitivity or the resistance of cancer cells to CTL-mediated toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated manner in which genes and pathways act in cancer cells to orchestrate their evasion of CTLs, and shows that discrete functional modules that control the interferon response and tumour necrosis factor (TNF)-induced cytotoxicity are dominant sub-phenotypes. Our data establish a central role for genes that were previously identified as negative regulators of the type-II interferon response (for example, Ptpn2, Socs1 and Adar1) in mediating CTL evasion, and show that the lipid-droplet-related gene Fitm2 is required for maintaining cell fitness after exposure to interferon-γ (IFNγ). In addition, we identify the autophagy pathway as a conserved mediator of the evasion of CTLs by cancer cells, and show that this pathway is required to resist cytotoxicity induced by the cytokines IFNγ and TNF. Through the mapping of cytokine- and CTL-based genetic interactions, together with in vivo CRISPR screens, we show how the pleiotropic effects of autophagy control cancer-cell-intrinsic evasion of killing by CTLs and we highlight the importance of these effects within the tumour microenvironment. Collectively, these data expand our knowledge of the genetic circuits that are involved in the evasion of the immune system by cancer cells, and highlight genetic interactions that contribute to phenotypes associated with escape from killing by CTLs.


Assuntos
Genoma/genética , Genômica , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Animais , Autofagia , Linhagem Celular Tumoral , Feminino , Genes Neoplásicos/genética , Humanos , Interferon gama/imunologia , Masculino , Camundongos , NF-kappa B/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
12.
Mol Cell ; 72(3): 510-524.e12, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388412

RESUMO

Alternative splicing is crucial for diverse cellular, developmental, and pathological processes. However, the full networks of factors that control individual splicing events are not known. Here, we describe a CRISPR-based strategy for the genome-wide elucidation of pathways that control splicing and apply it to microexons with important functions in nervous system development and that are commonly misregulated in autism. Approximately 200 genes associated with functionally diverse regulatory layers and enriched in genetic links to autism control neuronal microexons. Remarkably, the widely expressed RNA binding proteins Srsf11 and Rnps1 directly, preferentially, and frequently co-activate these microexons. These factors form critical interactions with the neuronal splicing regulator Srrm4 and a bi-partite intronic splicing enhancer element to promote spliceosome formation. Our study thus presents a versatile system for the identification of entire splicing regulatory pathways and further reveals a common mechanism for the definition of neuronal microexons that is disrupted in autism.


Assuntos
Processamento Alternativo/fisiologia , Engenharia Genética/métodos , Sítios de Splice de RNA/fisiologia , Animais , Transtorno Autístico/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular , Éxons/fisiologia , Humanos , Camundongos , Proteínas do Tecido Nervoso , Neurogênese , Neurônios , Precursores de RNA/fisiologia , Splicing de RNA/fisiologia , Proteínas de Ligação a RNA , Ribonucleoproteínas , Fatores de Processamento de Serina-Arginina , Spliceossomos
13.
Nucleic Acids Res ; 52(8): 4483-4501, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587191

RESUMO

Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.


Assuntos
Sistemas CRISPR-Cas , Genes Reporter , Precursores de RNA , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/genética , Genoma Humano , Células HEK293 , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Poliadenilação , Clivagem do RNA , RNA Polimerase II/metabolismo , Precursores de RNA/metabolismo , Precursores de RNA/genética
14.
Mol Syst Biol ; 20(6): 719-740, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38580884

RESUMO

Tumor suppressor p53 (TP53) is frequently mutated in cancer, often resulting not only in loss of its tumor-suppressive function but also acquisition of dominant-negative and even oncogenic gain-of-function traits. While wild-type p53 levels are tightly regulated, mutants are typically stabilized in tumors, which is crucial for their oncogenic properties. Here, we systematically profiled the factors that regulate protein stability of wild-type and mutant p53 using marker-based genome-wide CRISPR screens. Most regulators of wild-type p53 also regulate p53 mutants, except for p53 R337H regulators, which are largely private to this mutant. Mechanistically, FBXO42 emerged as a positive regulator for a subset of p53 mutants, working with CCDC6 to control USP28-mediated mutant p53 stabilization. Additionally, C16orf72/HAPSTR1 negatively regulates both wild-type p53 and all tested mutants. C16orf72/HAPSTR1 is commonly amplified in breast cancer, and its overexpression reduces p53 levels in mouse mammary epithelium leading to accelerated breast cancer. This study offers a network perspective on p53 stability regulation, potentially guiding strategies to reinforce wild-type p53 or target mutant p53 in cancer.


Assuntos
Mutação , Estabilidade Proteica , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Camundongos , Feminino , Sistemas CRISPR-Cas , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Regulação Neoplásica da Expressão Gênica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
15.
Mol Cell ; 65(3): 539-553.e7, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157508

RESUMO

Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.


Assuntos
Processamento Alternativo , Redes Reguladoras de Genes , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HEK293 , Humanos , Camundongos , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/genética
16.
Nat Chem Biol ; 18(9): 1023-1031, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953550

RESUMO

Nanotechnology provides platforms to deliver medical agents to specific cells. However, the nanoparticle's surface becomes covered with serum proteins in the blood after administration despite engineering efforts to protect it with targeting or blocking molecules. Here, we developed a strategy to identify the main interactions between nanoparticle-adsorbed proteins and a cell by integrating mass spectrometry with pooled genome screens and Search Tool for the Retrieval of Interacting Genes analysis. We found that the low-density lipoprotein (LDL) receptor was responsible for approximately 75% of serum-coated gold nanoparticle uptake in U-87 MG cells. Apolipoprotein B and complement C8 proteins on the nanoparticle mediated uptake through the LDL receptor. In vivo, nanoparticle accumulation correlated with LDL receptor expression in the organs of mice. A detailed understanding of how adsorbed serum proteins bind to cell receptors will lay the groundwork for controlling the delivery of nanoparticles at the molecular level to diseased tissues for therapeutic and diagnostic applications.


Assuntos
Nanopartículas Metálicas , Coroa de Proteína , Animais , Proteínas Sanguíneas , Ouro , Camundongos , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Receptores de Superfície Celular , Receptores de LDL/genética
17.
Nat Chem Biol ; 18(12): 1370-1379, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35970996

RESUMO

Pyrvinium is a quinoline-derived cyanine dye and an approved anti-helminthic drug reported to inhibit WNT signaling and have anti-proliferative effects in various cancer cell lines. To further understand the mechanism by which pyrvinium is cytotoxic, we conducted a pooled genome-wide CRISPR loss-of-function screen in the human HAP1 cell model. The top drug-gene sensitizer interactions implicated the malate-aspartate and glycerol-3-phosphate shuttles as mediators of cytotoxicity to mitochondrial complex I inhibition including pyrvinium. By contrast, perturbation of the poorly characterized gene C1orf115/RDD1 resulted in strong resistance to the cytotoxic effects of pyrvinium through dysregulation of the major drug efflux pump ABCB1/MDR1. Interestingly, C1orf115/RDD1 was found to physically associate with ABCB1/MDR1 through proximity-labeling experiments and perturbation of C1orf115 led to mis-localization of ABCB1/MDR1. Our results are consistent with a model whereby C1orf115 modulates drug efflux through regulation of the major drug exporter ABCB1/MDR1.


Assuntos
Antineoplásicos , Compostos de Pirvínio , Humanos , Compostos de Pirvínio/farmacologia , Via de Sinalização Wnt , Antineoplásicos/farmacologia , Genômica
18.
Nat Rev Genet ; 19(1): 34-49, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29033457

RESUMO

Gene essentiality is a founding concept of genetics with important implications in both fundamental and applied research. Multiple screens have been performed over the years in bacteria, yeasts, animals and more recently in human cells to identify essential genes. A mounting body of evidence suggests that gene essentiality, rather than being a static and binary property, is both context dependent and evolvable in all kingdoms of life. This concept of a non-absolute nature of gene essentiality changes our fundamental understanding of essential biological processes and could directly affect future treatment strategies for cancer and infectious diseases.


Assuntos
Genes Essenciais , Animais , Sequência Conservada , Sistemas de Liberação de Medicamentos , Resistência a Medicamentos/genética , Evolução Molecular , Edição de Genes , Redes Reguladoras de Genes , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Engenharia Metabólica , Modelos Genéticos , Biologia Sintética
19.
Nature ; 559(7713): 285-289, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29973717

RESUMO

The observation that BRCA1- and BRCA2-deficient cells are sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP) has spurred the development of cancer therapies that use these inhibitors to target deficiencies in homologous recombination1. The cytotoxicity of PARP inhibitors depends on PARP trapping, the formation of non-covalent protein-DNA adducts composed of inhibited PARP1 bound to DNA lesions of unclear origins1-4. To address the nature of such lesions and the cellular consequences of PARP trapping, we undertook three CRISPR (clustered regularly interspersed palindromic repeats) screens to identify genes and pathways that mediate cellular resistance to olaparib, a clinically approved PARP inhibitor1. Here we present a high-confidence set of 73 genes, which when mutated cause increased sensitivity to PARP inhibitors. In addition to an expected enrichment for genes related to homologous recombination, we discovered that mutations in all three genes encoding ribonuclease H2 sensitized cells to PARP inhibition. We establish that the underlying cause of the PARP-inhibitor hypersensitivity of cells deficient in ribonuclease H2 is impaired ribonucleotide excision repair5. Embedded ribonucleotides, which are abundant in the genome of cells deficient in ribonucleotide excision repair, are substrates for cleavage by topoisomerase 1, resulting in PARP-trapping lesions that impede DNA replication and endanger genome integrity. We conclude that genomic ribonucleotides are a hitherto unappreciated source of PARP-trapping DNA lesions, and that the frequent deletion of RNASEH2B in metastatic prostate cancer and chronic lymphocytic leukaemia could provide an opportunity to exploit these findings therapeutically.


Assuntos
Sistemas CRISPR-Cas , Dano ao DNA , Edição de Genes , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ribonucleotídeos/genética , Animais , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , Feminino , Genes BRCA1 , Genoma/genética , Células HeLa , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Ribonuclease H/deficiência , Ribonuclease H/genética , Ribonuclease H/metabolismo , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nature ; 563(7732): 559-563, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464266

RESUMO

The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.


Assuntos
Caderinas/metabolismo , Orthohantavírus/fisiologia , Internalização do Vírus , Animais , Caderinas/química , Caderinas/deficiência , Caderinas/genética , Células Endoteliais/virologia , Feminino , Orthohantavírus/patogenicidade , Síndrome Pulmonar por Hantavirus/virologia , Haploidia , Interações Hospedeiro-Patógeno/genética , Humanos , Pulmão/citologia , Masculino , Mesocricetus/virologia , Domínios Proteicos , Protocaderinas , Vírus Sin Nombre/patogenicidade , Vírus Sin Nombre/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA