Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012965

RESUMO

During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically-encoded second generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions and maintaining accumulation in the mature nodule meristem. We show, through mis-expression of GA catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.

2.
Plant Cell Environ ; 46(10): 2998-3011, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36717758

RESUMO

Plant root architecture is developmentally plastic in response to fluctuating nutrient levels in the soil. Part of this developmental plasticity is the formation of dedicated root cells and organs to host mutualistic symbionts. Structures like nitrogen-fixing nodules serve as alternative nutrient acquisition strategies during starvation conditions. Some root systems can also form myconodules-globular root structures that can host mycorrhizal fungi. The myconodule association is different from the wide-spread arbuscular mycorrhization. This range of symbiotic associations provides different degrees of compartmentalisation, from the cellular to organ scale, which allows the plant host to regulate the entry and extent of symbiotic interactions. In this review, we discuss the degrees of symbiont compartmentalisation by the plant host as a developmental strategy and speculate how spatial confinement mitigates risks associated with root symbiosis.


Assuntos
Micorrizas , Simbiose , Micorrizas/fisiologia , Plantas
3.
New Phytol ; 226(6): 1809-1821, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32048296

RESUMO

Root system architecture (RSA) influences the effectiveness of resources acquisition from soils but the genetic networks that control RSA remain largely unclear. We used rhizoboxes, X-ray computed tomography, grafting, auxin transport measurements and hormone quantification to demonstrate that Arabidopsis and Medicago CEP (C-TERMINALLY ENCODED PEPTIDE)-CEP RECEPTOR signalling controls RSA, the gravitropic set-point angle (GSA) of lateral roots (LRs), auxin levels and auxin transport. We showed that soil-grown Arabidopsis and Medicago CEP receptor mutants have a narrower RSA, which results from a steeper LR GSA. Grafting showed that CEPR1 in the shoot controls GSA. CEP receptor mutants exhibited an increase in rootward auxin transport and elevated shoot auxin levels. Consistently, the application of auxin to wild-type shoots induced a steeper GSA and auxin transport inhibitors counteracted the CEP receptor mutant's steep GSA phenotype. Concordantly, CEP peptides increased GSA and inhibited rootward auxin transport in wild-type but not in CEP receptor mutants. The results indicated that CEP-CEP receptor-dependent signalling outputs in Arabidopsis and Medicago control overall RSA, LR GSA, shoot auxin levels and rootward auxin transport. We propose that manipulating CEP signalling strength or CEP receptor downstream targets may provide means to alter RSA.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Medicago/genética , Medicago/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Receptores de Peptídeos/metabolismo
4.
Mol Cell Proteomics ; 17(1): 160-174, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079721

RESUMO

Multigene families encoding diverse secreted peptide hormones play important roles in plant development. A need exists to efficiently elucidate the structures and post-translational-modifications of these difficult-to-isolate peptide hormones in planta so that their biological functions can be determined. A mass spectrometry and bioinformatics approach was developed to comprehensively analyze the secreted peptidome of Medicago hairy root cultures and xylem sap. We identified 759 spectra corresponding to the secreted products of twelve peptide hormones including four CEP (C-TERMINALLY ENCODED PEPTIDE), two CLE (CLV3/ENDOSPERM SURROUNDING REGION RELATED) and six XAP (XYLEM SAP ASSOCIATED PEPTIDE) peptides. The MtCEP1, MtCEP2, MtCEP5 and MtCEP8 peptides identified differed in post-translational-modifications. Most were hydroxylated at conserved proline residues but some MtCEP1 derivatives were tri-arabinosylated. In addition, many CEP peptides possessed unexpected N- and C-terminal extensions. The pattern of these extensions suggested roles for endo- and exoproteases in CEP peptide maturation. Longer than expected, hydroxylated and homogeneously modified mono- and tri-arabinosylated CEP peptides corresponding to their in vivo structures were chemically synthesized to probe the effect of these post-translational-modifications on function. The ability of CEP peptides to elevate root nodule number was increased by hydroxylation at key positions. MtCEP1 peptides with N-terminal extensions or with tri-arabinosylation modification, however, were unable to impart increased nodulation. The MtCLE5 and MtCLE17 peptides identified were of precise size, and inhibited main root growth and increased lateral root number. Six XAP peptides, each beginning with a conserved DY sulfation motif, were identified including MtXAP1a, MtXAP1b, MtXAP1c, MtXAP3, MtXAP5 and MtXAP7. MtXAP1a and MtXAP5 inhibited lateral root emergence. Transcriptional analyses demonstrated peptide hormone gene expression in the root vasculature and tip. Since hairy roots can be induced on many plants, their corresponding root cultures may represent ideal source materials to efficiently identify diverse peptide hormones in vivo in a broad range of species.


Assuntos
Medicago truncatula/fisiologia , Hormônios Peptídicos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Xilema/metabolismo
5.
Plant Physiol ; 171(4): 2536-48, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27342310

RESUMO

C-TERMINALLY ENCODED PEPTIDEs (CEPs) control root system architecture in a non-cell-autonomous manner. In Medicago truncatula, MtCEP1 affects root development by increasing nodule formation and inhibiting lateral root emergence by unknown pathways. Here, we show that the MtCEP1 peptide-dependent increase in nodulation requires the symbiotic signaling pathway and ETHYLENE INSENSITIVE2 (EIN2)/SICKLE (SKL), but acts independently of SUPER NUMERIC NODULES. MtCEP1-dependent inhibition of lateral root development acts through an EIN2-independent mechanism. MtCEP1 increases nodulation by promoting rhizobial infections, the developmental competency of roots for nodulation, the formation of fused nodules, and an increase in frequency of nodule development that initiates at proto-phloem poles. These phenotypes are similar to those of the ein2/skl mutant and support that MtCEP1 modulates EIN2-dependent symbiotic responses. Accordingly, MtCEP1 counteracts the reduction in nodulation induced by increasing ethylene precursor concentrations, and an ethylene synthesis inhibitor treatment antagonizes MtCEP1 root phenotypes. MtCEP1 also inhibits the development of EIN2-dependent pseudonodule formation. Finally, mutants affecting the COMPACT ROOT ARCHITECTURE2 (CRA2) receptor, which is closely related to the Arabidopsis CEP Receptor1, are unresponsive to MtCEP1 effects on lateral root and nodule formation, suggesting that CRA2 is a CEP peptide receptor mediating both organogenesis programs. In addition, an ethylene inhibitor treatment counteracts the cra2 nodulation phenotype. These results indicate that MtCEP1 and its likely receptor, CRA2, mediate nodulation and lateral root development through different pathways.


Assuntos
Etilenos/metabolismo , Medicago truncatula/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Receptores de Peptídeos/metabolismo , Rhizobium/fisiologia , Medicago truncatula/citologia , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
6.
J Exp Bot ; 66(17): 5171-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249310

RESUMO

Many legumes have the capacity to enter into a symbiotic association with soil bacteria generically called 'rhizobia' that results in the formation of new lateral organs on roots called nodules within which the rhizobia fix atmospheric nitrogen (N). Up to 200 million tonnes of N per annum is fixed by this association. Therefore, this symbiosis plays an integral role in the N cycle and is exploited in agriculture to support the sustainable fixation of N for cropping and animal production in developing and developed nations. Root nodulation is an expendable developmental process and competency for nodulation is coupled to low-N conditions. Both nodule initiation and development is suppressed under high-N conditions. Although root nodule formation enables sufficient N to be fixed for legumes to grow under N-deficient conditions, the carbon cost is high and nodule number is tightly regulated by local and systemic mechanisms. How legumes co-ordinate nodule formation with the other main organs of nutrient acquisition, lateral roots, is not fully understood. Independent mechanisms appear to regulate lateral roots and nodules under low- and high-N regimes. Recently, several signalling peptides have been implicated in the local and systemic regulation of nodule and lateral root formation. Other peptide classes control the symbiotic interaction of rhizobia with the host. This review focuses on the roles played by signalling peptides during the early stages of root nodule formation, in the control of nodule number, and in the establishment of symbiosis. Here, we highlight the latest findings and the gaps in our understanding of these processes.


Assuntos
Fabaceae/fisiologia , Peptídeos/genética , Proteínas de Plantas/genética , Nodulação , Nódulos Radiculares de Plantas/fisiologia , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Simbiose
7.
J Exp Bot ; 66(17): 5289-300, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25711701

RESUMO

Small, post-translationally modified and secreted peptides regulate diverse plant developmental processes. Due to low natural abundance, it is difficult to isolate and identify these peptides. Using an improved peptide isolation protocol and Orbitrap mass spectrometry, nine 15-amino-acid CEP peptides were identified that corresponded to the two domains encoded by Medicago truncatula CEP1 (MtCEP1). Novel arabinosylated and hydroxylated peptides were identified in root cultures overexpressing MtCEP1. The five most abundant CEP peptides were hydroxylated and these species were detected also in low amounts in vector control samples. Synthetic peptides with different hydroxylation patterns differentially affected root development. Notably, the domain 1 peptide hydroxylated at Pro4 and Pro11 (D1:HyP4,11) imparted the strongest inhibition of lateral root emergence when grown with 5mM KNO3 and stimulated the highest increase in nodule number when grown with 0mM KNO3. Inhibition of lateral root emergence by D1:HyP4,11 was not alleviated by removing peptide exposure. In contrast, the domain 2 peptide hydroxylated at Pro11 (D2:HyP11) increased stage III-IV lateral root primordium numbers by 6-fold (P < 0.001) which failed to emerge. Auxin addition at levels which stimulated lateral root formation in wild-type plants had little or no ameliorating effect on CEP peptide-mediated inhibition of lateral root formation or emergence. Both peptides increased and altered the root staining pattern of the auxin-responsive reporter GH3:GUS suggesting CEPs alter auxin sensitivity or distribution. The results showed that CEP primary sequence and post-translational modifications influence peptide activities and the improved isolation procedure effectively and reproducibly identifies and characterises CEPs.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/farmacologia , Medicago truncatula/genética , Ácidos Naftalenoacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espectrometria de Massas em Tandem
8.
J Exp Bot ; 64(17): 5395-409, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24259455

RESUMO

The role of MtCEP1, a member of the CEP (C-terminally encoded peptide) signaling peptide family, was examined in Medicago truncatula root development. MtCEP1 was expressed in root tips, vascular tissue, and young lateral organs, and was up-regulated by low nitrogen levels and, independently, by elevated CO2. Overexpressing MtCEP1 or applying MtCEP1 peptide to roots elicited developmental phenotypes: inhibition of lateral root formation, enhancement of nodulation, and the induction of periodic circumferential root swellings, which arose from cortical, epidermal, and pericycle cell divisions and featured an additional cortical cell layer. MtCEP peptide addition to other legume species induced similar phenotypes. The enhancement of nodulation by MtCEP1 is partially tolerant to high nitrate, which normally strongly suppresses nodulation. These nodules develop faster, are larger, and fix more nitrogen in the absence and presence of inhibiting nitrate levels. At 25mM nitrate, nodules formed on pre-existing swelling sites induced by MtCEP1 overexpression. RNA interference-mediated silencing of several MtCEP genes revealed a negative correlation between transcript levels of MtCEP1 and MtCEP2 with the number of lateral roots. MtCEP1 peptide-dependent phenotypes were abolished or attenuated by altering or deleting key residues in its 15 amino acid domain. RNA-Seq analysis revealed that 89 and 116 genes were significantly up- and down-regulated, respectively, by MtCEP1 overexpression, including transcription factors WRKY, bZIP, ERF, and MYB, homologues of LOB29, SUPERROOT2, and BABY BOOM. Taken together, the data suggest that the MtCEP1 peptide modulates lateral root and nodule development in M. truncatula.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Peptídeos/genética , Proteínas de Plantas/genética , Transdução de Sinais , Sinorhizobium meliloti/fisiologia , Dióxido de Carbono/metabolismo , Genes Reporter , Medicago truncatula/citologia , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/fisiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio , Peptídeos/farmacologia , Fenótipo , Proteínas de Plantas/metabolismo , Nodulação , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA de Plantas/química , RNA de Plantas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/fisiologia , Análise de Sequência de RNA , Simbiose
9.
Curr Opin Cell Biol ; 44: 51-58, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28347931

RESUMO

Cells within tissues can be regarded as autonomous entities that respond to their local environment and to signals from neighbours. Coordination between cells is particularly important in plants, as the architecture of the plant adapts to environmental cues. To explain the architectural plasticity of the root, we propose to view it as a swarm of coupled multi-cellular structures, rhizomers, rather than a large set of autonomous cells. Each rhizomer contains a primed site with the potential to develop a single lateral root. Rhizomers are spaced through oscillatory genetic events that occur at the basal root tip. The decision whether or not to develop a lateral root primordium results from the interplay between local interactions of the rhizomer with its immediate environment, such as local nutrient availability, long-range interactions between the rhizomers and global cues, such as overall nutrient uptake. It can halt lateral root progression through its developmental stages, resulting in the observed complex root architecture.


Assuntos
Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Solo/química
10.
Front Plant Sci ; 4: 385, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24098303

RESUMO

Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA