Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Microsc Microanal ; 30(2): 318-333, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38525890

RESUMO

Correlative light and electron microscopy (CLEM) methods are powerful methods that combine molecular organization (from light microscopy) with ultrastructure (from electron microscopy). However, CLEM methods pose high cost/difficulty barriers to entry and have very low experimental throughput. Therefore, we have developed an indirect correlative light and electron microscopy (iCLEM) pipeline to sidestep the rate-limiting steps of CLEM (i.e., preparing and imaging the same samples on multiple microscopes) and correlate multiscale structural data gleaned from separate samples imaged using different modalities by exploiting biological structures identifiable by both light and electron microscopy as intrinsic fiducials. We demonstrate here an application of iCLEM, where we utilized gap junctions and mechanical junctions between muscle cells in the heart as intrinsic fiducials to correlate ultrastructural measurements from transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM) with molecular organization from confocal microscopy and single molecule localization microscopy (SMLM). We further demonstrate how iCLEM can be integrated with computational modeling to discover structure-function relationships. Thus, we present iCLEM as a novel approach that complements existing CLEM methods and provides a generalizable framework that can be applied to any set of imaging modalities, provided suitable intrinsic fiducials can be identified.


Assuntos
Microscopia Eletrônica , Animais , Microscopia Eletrônica/métodos , Junções Comunicantes/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Microscopia Confocal/métodos , Microscopia Eletrônica de Varredura/métodos , Camundongos
2.
Biophys J ; 122(9): 1613-1632, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36945778

RESUMO

The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN activity emerges at an early point in life and maintains a steady rhythm for the lifetime of the organism. The ion channel composition and currents of SAN cells can be influenced by a variety of factors. Therefore, the emergent activity and long-term stability imply some form of dynamical feedback control of SAN activity. We adapt a recent feedback model-previously utilized to describe control of ion conductances in neurons-to a model of SAN cells and tissue. The model describes a minimal regulatory mechanism of ion channel conductances via feedback between intracellular calcium and an intrinsic target calcium level. By coupling a SAN cell to the calcium feedback model, we show that spontaneous electrical activity emerges from quiescence and is maintained at steady state. In a 2D SAN tissue model, spatial variability in intracellular calcium targets lead to significant, self-organized heterogeneous ion channel expression and calcium transients throughout the tissue. Furthermore, multiple pacemaking regions appear, which interact and lead to time-varying cycle length, demonstrating that variability in heart rate is an emergent property of the feedback model. Finally, we demonstrate that the SAN tissue is robust to the silencing of leading cells or ion channel knockouts. Thus, the calcium feedback model can reproduce and explain many fundamental emergent properties of activity in the SAN that have been observed experimentally based on a minimal description of intracellular calcium and ion channel regulatory networks.


Assuntos
Cálcio , Nó Sinoatrial , Cálcio/metabolismo , Retroalimentação , Canais Iônicos/metabolismo , Relógios Biológicos/fisiologia , Potenciais de Ação/fisiologia
3.
Am J Physiol Heart Circ Physiol ; 324(2): H179-H197, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36487185

RESUMO

Many cardiac diseases are characterized by an increased late sodium current, including heart failure, hypertrophic cardiomyopathy, and inherited long QT syndrome type 3 (LQT3). The late sodium current in LQT3 is caused by a gain-of-function mutation in the voltage-gated sodium channel Nav1.5. Despite a well-defined genetic cause of LQT3, treatment remains inconsistent because of incomplete penetrance of the mutation and variability of antiarrhythmic efficacy. Here, we investigate the relationship between LQT3-associated mutation incomplete penetrance and variability in ion channel expression, simulating a population of 1,000 individuals with the O'Hara-Rudy model of the human ventricular myocyte. We first simulate healthy electrical activity (i.e., in the absence of a mutation) and then incorporate heterozygous expression for three LQT3-associated mutations (Y1795C, I1768V, and ΔKPQ), to directly compare the effects of each mutation on individuals across a diverse population. For all mutations, we find that susceptibility, defined by either the presence of an early afterdepolarization (EAD) or prolonged action potential duration (APD), primarily depends on the balance between the conductance of IKr and INa, for which individuals with a higher IKr-to-INa ratio are less susceptible. Furthermore, we find distinct differences across the population, observing individuals susceptible to zero, one, two, or all three mutations. Individuals tend to be less susceptible with an appropriate balance of repolarizing currents, typically via increased IKs or IK1. Interestingly, the more critical repolarizing current is mutation specific. We conclude that the balance between key currents plays a significant role in mutant-specific presentation of the disease phenotype in LQT3.NEW & NOTEWORTHY An in silico population approach investigates the relationship between variability in ion channel expression and gain-of-function mutations in the voltage-gated sodium channel associated with the congenital disorder long QT syndrome type 3 (LQT3). We find that ion channel variability can contribute to incomplete penetrance of the mutation, with mutant-specific differences in ion channel conductances leading to susceptibility to proarrhythmic action potential duration prolongation or early afterdepolarizations.


Assuntos
Síndrome do QT Longo , Humanos , Potenciais de Ação , Canais Iônicos/genética , Síndrome do QT Longo/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Penetrância , Sódio/metabolismo , Simulação por Computador
4.
J Theor Biol ; 544: 111122, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35427645

RESUMO

A heart attack, or acute myocardial infarction (MI) is caused by the acute occlusion of a coronary artery. MI is associated with 30% mortality; approximately half of the deaths occur prior to arrival at the hospital. Reperfusion therapy in the hospital is a medical treatment to restore blood flow through the blocked artery; treatment includes drugs and surgery. However, the damage to the heart muscles through the infarct area is permanent and there is additional damage around the infarct area due to inflammation or insufficient oxygen supply. Approximately half of the patients who survive MI are hospitalized again within one year after reperfusion treatment. In this paper we develop a mathematical model of MI and use it to assess the efficacy of drugs used, post reperfusion, to reduce the damage caused by inflammation in a region of the left ventricular wall surrounding the infarct area. The mathematical model, represented by a system of partial differential equations. The model variables include myocytes, endothelial cells, neutrophils, macrophages, fibroblasts and cytokines that play a role in the interactions among these cells. The drugs used to in the model include IL-1, TNF-α and TGF-ß inhibitors, and the delivery of VEGF. The model is based on mice data. In particular, we find that immunomodulatory treatment with TNF-α and IL-1 inhibitors can significantly increase the low density of myocytes bordering the infarct area by 50-60% and decrease the abnormally high density of ECM in a region surrounding the infarct area.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Animais , Modelos Animais de Doenças , Humanos , Inflamação , Interleucina-1/uso terapêutico , Camundongos , Modelos Teóricos , Infarto do Miocárdio/tratamento farmacológico , Fator de Necrose Tumoral alfa
5.
Basic Res Cardiol ; 116(1): 63, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34713358

RESUMO

It is widely assumed that synthesis of membrane proteins, particularly in the heart, follows the classical secretory pathway with mRNA translation occurring in perinuclear regions followed by protein trafficking to sites of deployment. However, this view is based on studies conducted in less-specialized cells, and has not been experimentally addressed in cardiac myocytes. Therefore, we undertook direct experimental investigation of protein synthesis in cardiac tissue and isolated myocytes using single-molecule visualization techniques and a novel proximity-ligated in situ hybridization approach for visualizing ribosome-associated mRNA molecules for a specific protein species, indicative of translation sites. We identify here, for the first time, that the molecular machinery for membrane protein synthesis occurs throughout the cardiac myocyte, and enables distributed synthesis of membrane proteins within sub-cellular niches where the synthesized protein functions using local mRNA pools trafficked, in part, by microtubules. We also observed cell-wide distribution of membrane protein mRNA in myocardial tissue from both non-failing and hypertrophied (failing) human hearts, demonstrating an evolutionarily conserved distributed mechanism from mouse to human. Our results identify previously unanticipated aspects of local control of cardiac myocyte biology and highlight local protein synthesis in cardiac myocytes as an important potential determinant of the heart's biology in health and disease.


Assuntos
Miócitos Cardíacos , Retículo Sarcoplasmático , Animais , Células Cultivadas , Proteínas de Membrana , Camundongos , Miocárdio
6.
J Theor Biol ; 512: 110532, 2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33152395

RESUMO

Multiple sclerosis is an autoimmune disease that affects white matter in the central nervous system. It is one of the primary causes of neurological disability among young people. Its characteristic pathological lesion is called a plaque, a zone of inflammatory activity and tissue destruction that expands radially outward by destroying the myelin and oligodendrocytes of white matter. The present paper develops a mathematical model of the multiple sclerosis plaques. Although these plaques do not provide reliable information of the clinical disability in MS, they are nevertheless useful as a primary outcome measure of Phase II trials. The model consists of a system of partial differential equations in a simplified geometry of the lesion, consisting of three domains: perivascular space, demyelinated plaque, and white matter. The model describes the activity of various pro- and anti-inflammatory cells and cytokines in the plaque, and quantifies their effect on plaque growth. We show that volume growth of plaques are in qualitative agreement with reported clinical studies of several currently used drugs. We then use the model to explore treatments with combinations of such drugs, and with experimental drugs. We finally consider the benefits of early vs. delayed treatment.


Assuntos
Esclerose Múltipla , Substância Branca , Adolescente , Humanos , Modelos Teóricos , Bainha de Mielina , Oligodendroglia
7.
J Theor Biol ; 461: 17-33, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30347191

RESUMO

Rheumatoid arthritis (RA) is a common autoimmune disease that mainly affects the joints. It is characterized by synovial inflammation, which may result in cartilage and bone destruction. The present paper develops a mathematical model of chronic RA. The model is represented by a system of partial differential equations (PDEs) in the synovial fluid, the synovial membrane, and the cartilage. The model characterizes the progression of the disease in terms of the degradation of the cartilage. More precisely, we assume a simplified geometry in which the synovial membrane and the cartilage are planar layers adjacent to each other. We then quantify the state of the disease by how much the cartilage layer has decreased, or, equivalently, how much the synovial layer has increased. The model is used to evaluate treatments of RA by currently used drugs, as well as by experimental drugs.


Assuntos
Artrite Reumatoide/patologia , Modelos Teóricos , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/tratamento farmacológico , Cartilagem/patologia , Doença Crônica , Progressão da Doença , Avaliação de Medicamentos , Humanos , Líquido Sinovial , Membrana Sinovial/patologia
9.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712262

RESUMO

Background: Nearly 1% or 1.3 million babies are born with congenital heart disease (CHD) globally each year - many of whom will require palliative or corrective heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate cardiovascular drug therapies, and inform clinical care decisions related to surgical repair, myocardial preservation, or postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is largely limited to animal models. Methods: Right atrial tissue samples were collected from n=117 neonatal, infant, and pediatric patients undergoing correct surgery due to (acyanotic) CHD. Patients were stratified into five age groups: neonate (0-30 days), infant (31-364 days), toddler to preschool (1-5 years), school age (6-11 years), and adolescent to young adults (12-32 years). We measured age-dependent adaptations in cardiac gene expression, and used computational modeling to simulate action potential and calcium transients. Results: Enrichment of differentially expressed genes (DEG) was explored, revealing age-dependent changes in several key biological processes (cell cycle, cell division, mitosis), cardiac ion channels, and calcium handling genes. Gene-associated changes in ionic currents exhibited both linear trends and sudden shifts across developmental stages, with changes in calcium handling ( I NCX ) and repolarization ( I K1 ) most strongly associated with an age-dependent decrease in the action potential plateau potential and increase in triangulation, respectively. We also note a shift in repolarization reserve, with lower I Kr expression in younger patients, a finding likely tied to the increased amplitude of I Ks triggered by elevated sympathetic activation in pediatric patients. Conclusion: This study provides valuable insights into age-dependent changes in human cardiac gene expression and electrophysiology among patients with CHD, shedding light on molecular mechanisms underlying cardiac development and function across different developmental stages.

10.
JACC Clin Electrophysiol ; 10(5): 829-842, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430092

RESUMO

BACKGROUND: Sudden unexpected death in epilepsy (SUDEP) is a fatal complication experienced by otherwise healthy epilepsy patients. Dravet syndrome (DS) is an inherited epileptic disorder resulting from loss of function of the voltage-gated sodium channel, NaV 1.1, and is associated with particularly high SUDEP risk. Evidence is mounting that NaVs abundant in the brain also occur in the heart, suggesting that the very molecular mechanisms underlying epilepsy could also precipitate cardiac arrhythmias and sudden death. Despite marked reduction of NaV 1.1 functional expression in DS, pathogenic late sodium current (INa,L) is paradoxically increased in DS hearts. However, the mechanisms by which DS directly impacts the heart to promote sudden death remain unclear. OBJECTIVES: In this study, the authors sought to provide evidence implicating remodeling of Na+ - and Ca2+ -handling machinery, including NaV 1.6 and Na+/Ca2+exchanger (NCX) within transverse (T)-tubules in DS-associated arrhythmias. METHODS: The authors undertook scanning ion conductance microscopy (SICM)-guided patch clamp, super-resolution microscopy, confocal Ca2+ imaging, and in vivo electrocardiography studies in Scn1a haploinsufficient murine model of DS. RESULTS: DS promotes INa,L in T-tubular nanodomains, but not in other subcellular regions. Consistent with increased NaV activity in these regions, super-resolution microscopy revealed increased NaV 1.6 density near Ca2+release channels, the ryanodine receptors (RyR2) and NCX in DS relative to WT hearts. The resulting INa,L in these regions promoted aberrant Ca2+ release, leading to ventricular arrhythmias in vivo. Cardiac-specific deletion of NaV 1.6 protects adult DS mice from increased T-tubular late NaV activity and the resulting arrhythmias, as well as sudden death. CONCLUSIONS: These data demonstrate that NaV 1.6 undergoes remodeling within T-tubules of adult DS hearts serving as a substrate for Ca2+ -mediated cardiac arrhythmias and may be a druggable target for the prevention of SUDEP in adult DS subjects.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.6 , Animais , Feminino , Humanos , Masculino , Camundongos , Arritmias Cardíacas/genética , Cálcio/metabolismo , Epilepsias Mioclônicas/genética , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Morte Súbita Inesperada na Epilepsia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA