RESUMO
Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth, at least in part through the quinone oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-NQO1 axis as a potential host-directed strategy to improve Mabs infection control.
Assuntos
Fibrose Cística , Mycobacterium abscessus , Humanos , Fibrose Cística/tratamento farmacológico , Antioxidantes , Oxirredução , Estresse OxidativoRESUMO
The escalating prevalence of antibiotic-resistant bacterial infections necessitates urgent alternative therapeutic strategies. Phage therapy, which employs bacteriophages to specifically target pathogenic bacteria, emerges as a promising solution. This review examines the efficacy of phage therapy in zebrafish models, both embryos and adults, which are proven and reliable for simulating human infectious diseases. We synthesize findings from recent studies that utilized these models to assess phage treatments against various bacterial pathogens, including Enterococcus faecalis, Pseudomonas aeruginosa, Mycobacterium abscessus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli. Methods of phage administration, such as circulation injection and bath immersion, are detailed alongside evaluations of survival rates and bacterial load reductions. Notably, combination therapies of phages with antibiotics show enhanced efficacy, as evidenced by improved survival rates and synergistic effects in reducing bacterial loads. We also discuss the transition from zebrafish embryos to adult models, emphasizing the increased complexity of immune responses. This review highlights the valuable contribution of the zebrafish model to advancing phage therapy research, particularly in the face of rising antibiotic resistance and the urgent need for alternative treatments.
Assuntos
Antibacterianos , Infecções Bacterianas , Modelos Animais de Doenças , Terapia por Fagos , Peixe-Zebra , Terapia por Fagos/métodos , Animais , Infecções Bacterianas/terapia , Infecções Bacterianas/microbiologia , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Bacteriófagos/fisiologiaRESUMO
Staphylococcus aureus is a pathogenic bacterium responsible for a broad spectrum of infections, including cutaneous, respiratory, osteoarticular, and systemic infections. It poses a significant clinical challenge due to its ability to develop antibiotic resistance. This resistance limits therapeutic options, increases the risk of severe complications, and underscores the urgent need for new strategies to address this threat, including the investigation of treatments complementary to antibiotics. The evaluation of novel antimicrobial agents often employs animal models, with the zebrafish embryo model being particularly interesting for studying host-pathogen interactions, establishing itself as a crucial tool in this field. For the first time, this study presents a zebrafish embryo model for the in vivo assessment of bacteriophage efficacy against S. aureus infection. A localized infection was induced by microinjecting either methicillin-resistant S. aureus (MRSA) or methicillin-susceptible S. aureus (MSSA). Subsequent treatments involved administering either bacteriophage, vancomycin (the reference antibiotic for MRSA), or a combination of both via the same route to explore potential synergistic effects. Our findings indicate that the bacteriophage was as effective as vancomycin in enhancing survival rates, whether used alone or in combination. Moreover, bacteriophage treatment appears to be even more effective in reducing the bacterial load in S. aureus-infected embryos post-treatment than the antibiotic. Our study validates the use of the zebrafish embryo model and highlights its potential as a valuable tool in assessing bacteriophage efficacy treatments in vivo.
Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Terapia por Fagos , Infecções Estafilocócicas , Vancomicina , Peixe-Zebra , Animais , Peixe-Zebra/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/virologia , Terapia por Fagos/métodos , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Infecções Estafilocócicas/terapia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Embrião não Mamífero/microbiologia , Testes de Sensibilidade MicrobianaRESUMO
BACKGROUND: The transition from colonization to invasion is critical in diabetic foot ulcer (DFU). Staphylococcus aureus can colonize DFU, or invade the underlying tissues, causing serious infections. The ROSA-like prophage has previously been implicated in strain colonization characteristics of S aureus isolates in uninfected ulcers. METHODS: In this study, we investigated this prophage in the S aureus-colonizing strain using an in vitro chronic wound medium mimicking the chronic wound environment. RESULTS: Chronic wound medium reduced bacterial growth and increased biofilm formation and virulence in a zebrafish model. CONCLUSIONS: The ROSA-like prophage promoted intracellular survival of S aureus-colonizing strain in macrophages, keratinocytes, and osteoblasts.
Assuntos
Pé Diabético , Rosa , Infecções Estafilocócicas , Animais , Staphylococcus aureus , Virulência , Prófagos/genética , Peixe-Zebra , Pé Diabético/microbiologia , Infecções Estafilocócicas/microbiologia , BiofilmesRESUMO
Bacillus anthracis Ser/Thr protein kinase PrkC is necessary for phenotypic memory and spore germination, and the loss of PrkC-dependent phosphorylation events affect the spore development. During sporulation, Bacillus sp. can store 3-Phosphoglycerate (3-PGA) that will be required at the onset of germination when ATP will be necessary. The Phosphoglycerate mutase (Pgm) catalyzes the isomerization of 2-PGA and 3-PGA and is important for spore germination as a key metabolic enzyme that maintains 3-PGA pool at later events. Therefore, regulation of Pgm is important for an efficient spore germination process and metabolic switching. While the increased expression of Pgm in B. anthracis decreases spore germination efficiency, it remains unexplored if PrkC could directly influence Pgm activity. Here, we report the phosphorylation and regulation of Pgm by PrkC and its impact on Pgm stability and catalytic activity. Mass spectrometry revealed Pgm phosphorylation on seven threonine residues. In silico mutational analysis highlighted the role of Thr459 residue towards metal and substrate binding. Altogether, we demonstrated that PrkC-mediated Pgm phosphorylation negatively regulates its activity that is essential to maintain Pgm in its apo-like isoform before germination. This study advances the role of Pgm regulation that represents an important switch for B. anthracis resumption of metabolism and spore germination.
Assuntos
Bacillus anthracis , Proteínas Quinases , Fosforilação , Proteínas Quinases/metabolismo , Bacillus anthracis/metabolismo , Fosfoglicerato Mutase/metabolismo , Treonina/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismoRESUMO
Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.
Assuntos
Dictyostelium/fisiologia , Retículo Endoplasmático/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Legionella pneumophila/fisiologia , Proteínas de Protozoários/metabolismo , Vacúolos/microbiologia , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/microbiologia , Dictyostelium/ultraestrutura , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático Rugoso/microbiologia , Retículo Endoplasmático Rugoso/fisiologia , GTP Fosfo-Hidrolases/genética , Homeostase , Interações Hospedeiro-Patógeno , Legionella pneumophila/crescimento & desenvolvimento , Movimento , Muramidase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Protozoários/genética , Vacúolos/fisiologiaRESUMO
Chemosensory systems are highly organized signaling pathways that allow bacteria to adapt to environmental changes. The Frz chemosensory system from M. xanthus possesses two CheW-like proteins, FrzA (the core CheW) and FrzB. We found that FrzB does not interact with FrzE (the cognate CheA) as it lacks the amino acid region responsible for this interaction. FrzB, instead, acts upstream of FrzCD in the regulation of M. xanthus chemotaxis behaviors and activates the Frz pathway by allowing the formation and distribution of multiple chemosensory clusters on the nucleoid. These results, together, show that the lack of the CheA-interacting region in FrzB confers new functions to this small protein.
Assuntos
Quimiotaxia , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Myxococcus xanthus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Movimento Celular , Regulação Bacteriana da Expressão Gênica , Proteínas Quimiotáticas Aceptoras de Metil/genética , Myxococcus xanthus/genética , Óperon , Fenótipo , Transdução de SinaisRESUMO
Staphylococcus pettenkoferi is a recently described coagulase-negative Staphylococcus identified in human diseases, especially in infections of foot ulcers in patients living with diabetes mellitus. To date, its pathogenicity remains underexplored. In this study, whole-genome analysis was performed on a collection of 29 S. pettenkoferi clinical strains isolated from bloodstream and diabetic foot infections with regard to their phylogenetic relationships and comprehensive analysis of their resistome and virulome. Their virulence was explored by their ability to form biofilm, their growth kinetics and in an in vivo zebrafish embryo infection model. Our results identified two distinct clades (I and II) and two subclades (I-a and I-b) with notable genomic differences. All strains had a slow bacterial growth. Three profiles of biofilm formation were noted, with 89.7% of isolates able to produce biofilm and harbouring a high content of biofilm-encoding genes. Two virulence profiles were also observed in the zebrafish model irrespective of the strains' origin or biofilm profile. Therefore, this study brings new insights in S. pettenkoferi pathogenicity.
Assuntos
Doenças Transmissíveis , Diabetes Mellitus , Pé Diabético , Infecções Estafilocócicas , Humanos , Animais , Virulência/genética , Pé Diabético/microbiologia , Peixe-Zebra , Infecções Estafilocócicas/microbiologia , Filogenia , Staphylococcus/genética , Biofilmes , AntibacterianosRESUMO
Staphylococcus epidermidis is a common cause of device related infections on which pathogens form biofilms (i.e., multilayered cell populations embedded in an extracellular matrix). Here, we report that the transcription factor SpoVG is essential for the capacity of S. epidermidis to form such biofilms on artificial surfaces under in vitro conditions. Inactivation of spoVG in the polysaccharide intercellular adhesin (PIA) producing S. epidermidis strain 1457 yielded a mutant that, unlike its parental strain, failed to produce a clear biofilm in a microtiter plate-based static biofilm assay. A decreased biofilm formation capacity was also observed when 1457 ΔspoVG cells were co-cultured with polyurethane-based peripheral venous catheter fragments under dynamic conditions, while the cis-complemented 1457 ΔspoVG::spoVG derivative formed biofilms comparable to the levels seen with the wild-type. Transcriptional studies demonstrated that the deletion of spoVG significantly altered the expression of the intercellular adhesion (ica) locus by upregulating the transcription of the ica operon repressor icaR and down-regulating the transcription of icaADBC. Electrophoretic mobility shift assays (EMSA) revealed an interaction between SpoVG and the icaA-icaR intergenic region, suggesting SpoVG to promote biofilm formation of S. epidermidis by modulating ica expression. However, when mice were challenged with the 1457 ΔspoVG mutant in a foreign body infection model, only marginal differences in biomasses produced on the infected catheter fragments between the mutant and the parental strain were observed. These findings suggest that SpoVG is critical for the PIA-dependent biofilm formation of S. epidermis under in vitro conditions, but is largely dispensable for biofilm formation of this skin commensal under in vivo conditions.
Assuntos
Staphylococcus epidermidis , Fatores de Transcrição , Animais , Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Complexo Ferro-Dextran , Camundongos , Polissacarídeos Bacterianos/metabolismo , Staphylococcus epidermidis/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Staphylococcus aureus possesses a large arsenal of immune-modulating factors, enabling it to bypass the immune system's response. Here, we demonstrate that the acid phosphatase SapS is secreted during macrophage infection and promotes its intracellular survival in this type of immune cell. In animal models, the SA564 sapS mutant demonstrated a significantly lower bacterial burden in liver and renal tissues of mice at four days post infection in comparison to the wild type, along with lower pathogenicity in a zebrafish infection model. The SA564 sapS mutant elicits a lower inflammatory response in mice than the wild-type strain, while S. aureus cells harbouring a functional sapS induce a chemokine response that favours the recruitment of neutrophils to the infection site. Our in vitro and quantitative transcript analysis show that SapS has an effect on S. aureus capacity to adapt to oxidative stress during growth. SapS is also involved in S. aureus biofilm formation. Thus, this study shows for the first time that SapS plays a significant role during infection, most likely through inhibiting a variety of the host's defence mechanisms.
Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Camundongos , Animais , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fosfatase Ácida , Peixe-Zebra/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/microbiologiaRESUMO
The intracellular bacterial pathogen Coxiella burnetii is the etiological agent of the emerging zoonosis Q fever. Crucial to its pathogenesis is type 4b secretion system-mediated secretion of bacterial effectors into host cells that subvert host cell membrane trafficking, leading to the biogenesis of a parasitophorous vacuole for intracellular replication. The characterization of prokaryotic serine/threonine protein kinases in bacterial pathogens is emerging as an important strategy to better understand host-pathogen interactions. In this study, we investigated CstK (for Coxiella Ser/Thr kinase), a protein kinase identified in C. burnetii by in silico analysis. We demonstrate that this putative protein kinase undergoes autophosphorylation on Thr and Tyr residues and phosphorylates a classical eukaryotic protein kinase substrate in vitro This dual Thr-Tyr kinase activity is also observed for a eukaryotic dual-specificity Tyr phosphorylation-regulated kinase class. We found that CstK is translocated during infections and localizes to Coxiella-containing vacuoles (CCVs). Moreover, a CstK-overexpressing C. burnetii strain displayed a severe CCV development phenotype, suggesting that CstK fine-tunes CCV biogenesis during the infection. Protein-protein interaction experiments identified the Rab7 GTPase-activating protein TBC1D5 as a candidate CstK-specific target, suggesting a role for this host GTPase-activating protein in Coxiella infections. Indeed, CstK co-localized with TBC1D5 in noninfected cells, and TBC1D5 was recruited to CCVs in infected cells. Accordingly, TBC1D5 depletion from infected cells significantly affected CCV development. Our results indicate that CstK functions as a bacterial effector protein that interacts with the host protein TBC1D5 during vacuole biogenesis and intracellular replication.
Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/enzimologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Quinases/metabolismo , Febre Q/metabolismo , Vacúolos/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Coxiella burnetii/genética , Proteínas Ativadoras de GTPase/genética , Humanos , Fosforilação , Proteínas Quinases/genética , Febre Q/genética , Vacúolos/genética , Vacúolos/microbiologiaRESUMO
Post-translational modifications such as phosphorylation, nitrosylation, and pupylation modulate multiple cellular processes in Mycobacterium tuberculosis. While protein methylation at lysine and arginine residues is widespread in eukaryotes, to date only two methylated proteins in Mtb have been identified. Here, we report the identification of methylation at lysine and/or arginine residues in nine mycobacterial proteins. Among the proteins identified, we chose MtrA, an essential response regulator of a two-component signaling system, which gets methylated on multiple lysine and arginine residues to examine the functional consequences of methylation. While methylation of K207 confers a marginal decrease in the DNA-binding ability of MtrA, methylation of R122 or K204 significantly reduces the interaction with the DNA. Overexpression of S-adenosyl homocysteine hydrolase (SahH), an enzyme that modulates the levels of S-adenosyl methionine in mycobacteria decreases the extent of MtrA methylation. Most importantly, we show that decreased MtrA methylation results in transcriptional activation of mtrA and sahH promoters. Collectively, we identify novel methylated proteins, expand the list of modifications in mycobacteria by adding arginine methylation, and show that methylation regulates MtrA activity. We propose that protein methylation could be a more prevalent modification in mycobacterial proteins.
Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Metilação , Mycobacterium tuberculosis/genéticaRESUMO
The epidemiological success of Staphylococcus aureus as a versatile pathogen in mammals is largely attributed to its virulence factor repertoire and the sophisticated regulatory network controlling this virulon. Here we demonstrate that the low-molecular-weight protein arginine phosphatase PtpB contributes to this regulatory network by affecting the growth phase-dependent transcription of the virulence factor encoding genes/operons aur, nuc, and psmα, and that of the small regulatory RNA RNAIII. Inactivation of ptpB in S. aureus SA564 also significantly decreased the capacity of the mutant to degrade extracellular DNA, to hydrolyze proteins in the extracellular milieu, and to withstand Triton X-100 induced autolysis. SA564 ΔptpB mutant cells were additionally ingested faster by polymorphonuclear leukocytes in a whole blood phagocytosis assay, suggesting that PtpB contributes by several ways positively to the ability of S. aureus to evade host innate immunity.
Assuntos
Neutrófilos/metabolismo , Neutrófilos/microbiologia , Infecções Estafilocócicas/imunologia , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Peso Molecular , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , RNA Bacteriano/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Fatores de Virulência/metabolismoRESUMO
Staphylococcus aureus is a commensal bacterium that causes severe infections in soft tissue and the bloodstream. During infection, S. aureus manipulates host cell response to facilitate its own replication and dissemination. Here, we show that S. aureus significantly decreases the level of SUMOylation, an essential post-translational modification, in infected macrophages 24 h post-phagocytosis. The reduced level of SUMOylation correlates with a decrease in the SUMO-conjugating enzyme Ubc9. The over-expression of SUMO proteins in macrophages impaired bacterial intracellular proliferation and the inhibition of SUMOylation with ML-792 increased it. Together, these findings demonstrated for the first time the role of host SUMOylation response toward S. aureus infection.
Assuntos
Interações entre Hospedeiro e Microrganismos/imunologia , Macrófagos/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia , Animais , Macrófagos/citologia , Camundongos , Células RAW 264.7 , Sumoilação , Enzimas de Conjugação de Ubiquitina/imunologiaRESUMO
Staphylococcus pettenkoferi is a coagulase-negative Staphylococcus identified in 2002 that has been implicated in human diseases as an opportunistic pathogenic bacterium. Its multiresistant character is becoming a major health problem, yet the pathogenicity of S. pettenkoferi is poorly characterized. In this study, the pathogenicity of a S. pettenkoferi clinical isolate from diabetic foot osteomyelitis was compared with a Staphylococcus aureus strain in various in vitro and in vivo experiments. Growth kinetics were compared against S. aureus, and bacteria survival was assessed in the RAW 264.7 murine macrophage cell line, the THP-1 human leukemia monocytic cell line, and the HaCaT human keratinocyte cell line. Ex vivo analysis was performed in whole blood survival assays and in vivo assays via the infection model of zebrafish embryos. Moreover, whole-genome analysis was performed. Our results show that S. pettenkoferi was able to survive in human blood, human keratinocytes, murine macrophages, and human macrophages. S. pettenkoferi demonstrated its virulence by causing substantial embryo mortality in the zebrafish model. Genomic analysis revealed virulence factors such as biofilm-encoding genes (e.g., icaABCD; rsbUVW) and regulator-encoding genes (e.g., agr, mgrA, sarA, saeS) well characterized in S. aureus. This study thus advances the knowledge of this under-investigated pathogen and validates the zebrafish infection model for this bacterium.
Assuntos
Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus/patogenicidade , Animais , Modelos Animais de Doenças , Genes Bacterianos , Humanos , Camundongos , Células RAW 264.7 , Infecções Estafilocócicas/epidemiologia , Staphylococcus/genética , Células THP-1 , Virulência , Peixe-ZebraRESUMO
Mycobacterium tuberculosis is the causative agent of tuberculosis and remains one of the most widespread and deadliest bacterial pathogens in the world. A distinguishing feature of mycobacteria that sets them apart from other bacteria is the unique architecture of their cell wall, characterized by various species-specific lipids, most notably mycolic acids (MAs). Therefore, targeted inhibition of enzymes involved in MA biosynthesis, transport, and assembly has been extensively explored in drug discovery. Additionally, more recent evidence suggests that many enzymes in the MA biosynthesis pathway are regulated by kinase-mediated phosphorylation, thus opening additional drug-development opportunities. However, how phosphorylation regulates MA production remains unclear. Here, we used genetic strategies combined with lipidomics and phosphoproteomics approaches to investigate the role of protein phosphorylation in Mycobacterium The results of this analysis revealed that the Ser/Thr protein kinase PknB regulates the export of MAs and promotes the remodeling of the mycobacterial cell envelope. In particular, we identified the essential MmpL3 as a substrate negatively regulated by PknB. Taken together, our findings add to the understanding of how PknB activity affects the mycobacterial MA biosynthesis pathway and reveal the essential role of protein phosphorylation/dephosphorylation in governing lipid metabolism, paving the way for novel antimycobacterial strategies.
Assuntos
Mycobacterium tuberculosis/enzimologia , Ácidos Micólicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Biológico , Parede Celular/metabolismo , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/metabolismo , FosforilaçãoRESUMO
Bacillus anthracis is the causative agent of anthrax in humans, bovine, and other animals. B. anthracis pathogenesis requires differentiation of dormant spores into vegetative cells. The spores inherit cellular components as phenotypic memory from the parent cell, and this memory plays a critical role in facilitating the spores' revival. Because metabolism initiates at the beginning of spore germination, here we metabolically reprogrammed B. anthracis cells to understand the role of glycolytic enzymes in this process. We show that increased expression of enolase (Eno) in the sporulating mother cell decreases germination efficiency. Eno is phosphorylated by the conserved Ser/Thr protein kinase PrkC which decreases the catalytic activity of Eno. We found that phosphorylation also regulates Eno expression and localization, thereby controlling the overall spore germination process. Using MS analysis, we identified the sites of phosphorylation in Eno, and substitution(s) of selected phosphorylation sites helped establish the functional correlation between phosphorylation and Eno activity. We propose that PrkC-mediated regulation of Eno may help sporulating B. anthracis cells in adapting to nutrient deprivation. In summary, to the best of our knowledge, our study provides the first evidence that in sporulating B. anthracis, PrkC imprints phenotypic memory that facilitates the germination process.
Assuntos
Bacillus anthracis/fisiologia , Proteínas de Bactérias/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esporos Bacterianos/metabolismo , Bacillus anthracis/enzimologia , Proteínas de Bactérias/genética , Cinética , Magnésio/metabolismo , Mutagênese Sítio-Dirigida , Fosfopiruvato Hidratase/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genéticaRESUMO
The FrzCD chemoreceptor from the gliding bacterium Myxococcus xanthus forms cytoplasmic clusters that occupy a large central region of the cell body also occupied by the nucleoid. In this work, we show that FrzCD directly binds to the nucleoid with its N-terminal positively charged tail and recruits active signaling complexes at this location. The FrzCD binding to the nucleoid occur in a DNA-sequence independent manner and leads to the formation of multiple distributed clusters that explore constrained areas. This organization might be required for cooperative interactions between clustered receptors as observed in membrane-bound chemosensory arrays.
Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Quimiotaxia/genética , Citoplasma/metabolismo , Myxococcus xanthus/metabolismo , Ligação Proteica , Transdução de Sinais/genéticaRESUMO
Secretion of bacterial signaling proteins and adaptation to the host, especially during infection, are processes that are often linked in pathogenic bacteria. The human pathogen Staphylococcus aureus is equipped with a large arsenal of immune-modulating factors, allowing it to either subvert the host immune response or to create permissive niches for its survival. Recently, we showed that one of the low-molecular-weight protein tyrosine phosphatases produced by S. aureus, PtpA, is secreted during growth. Here, we report that deletion of ptpA in S. aureus affects intramacrophage survival and infectivity. We also observed that PtpA is secreted during macrophage infection. Immunoprecipitation assays identified several host proteins as putative intracellular binding partners for PtpA, including coronin-1A, a cytoskeleton-associated protein that is implicated in a variety of cellular processes. Of note, we demonstrated that coronin-1A is phosphorylated on tyrosine residues upon S. aureus infection and that its phosphorylation profile is linked to PtpA expression. Our results confirm that PtpA has a critical role during infection as a bacterial effector protein that counteracts host defenses.
Assuntos
Proteínas de Bactérias/genética , Interações Hospedeiro-Patógeno , Proteínas dos Microfilamentos/genética , Proteínas Tirosina Fosfatases/genética , Infecções Estafilocócicas/genética , Staphylococcus aureus/genética , Animais , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Dictyostelium/genética , Dictyostelium/metabolismo , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Células RAW 264.7 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Tirosina/metabolismo , VirulênciaRESUMO
Proteins that contain Eps15 homology domains (EHDs) in their C-terminus are newly identified key regulators of endosomal membrane trafficking. Here, we show that D. discoideum contains a single EHD protein (referred to as EHD) that localizes to endosomal compartments and newly formed phagosomes. We provide the first evidence that EHD regulates phagosome maturation. Deletion of EHD results in defects in intraphagosomal proteolysis and acidification. These defects are linked to early delivery of lysosomal enzymes and fast retrieval of the vacuolar H(+)-ATPase in maturing phagosomes. We also demonstrate that EHD physically interacts with DymA. Our results indicate that EHD and DymA can associate independently with endomembranes, and yet they share identical kinetics in recruitment to phagosomes and release during phagosome maturation. Functional analysis of ehd(-), dymA(-) and double dymA(-)ehd(-) knockout strains indicate that DymA and EHD play non-redundant and independent functions in phagosome maturation. Finally, we show that the absence of EHD leads to increased tubulation of endosomes, indicating that EHD participates in the scission of endosomal tubules, as reported for DymA.