RESUMO
Signaling through the T cell receptor (TCR) controls adaptive immune responses. Antigen binding to TCRαß transmits signals through the plasma membrane to induce phosphorylation of the CD3 cytoplasmic tails by incompletely understood mechanisms. Here we show that cholesterol bound to the TCRß transmembrane region keeps the TCR in a resting, inactive conformation that cannot be phosphorylated by active kinases. Only TCRs that spontaneously detached from cholesterol could switch to the active conformation (termed primed TCRs) and then be phosphorylated. Indeed, by modulating cholesterol binding genetically or enzymatically, we could switch the TCR between the resting and primed states. The active conformation was stabilized by binding to peptide-MHC, which thus controlled TCR signaling. These data are explained by a model of reciprocal allosteric regulation of TCR phosphorylation by cholesterol and ligand binding. Our results provide both a molecular mechanism and a conceptual framework for how lipid-receptor interactions regulate signal transduction.
Assuntos
Imunidade Adaptativa , Colesterol/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Linfócitos T/imunologia , Regulação Alostérica , Antígenos/imunologia , Antígenos/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária , Modelos Imunológicos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Transdução de SinaisRESUMO
BACKGROUND: Inhibition of mutant KRAS challenged cancer research for decades. Recently, allele-specific inhibitors were approved for the treatment of KRAS-G12C mutant lung cancer. However, de novo and acquired resistance limit their efficacy and several combinations are in clinical development. Our study shows the potential of combining G12C inhibitors with farnesyl-transferase inhibitors. METHODS: Combinations of clinically approved farnesyl-transferase inhibitors and KRAS G12C inhibitors are tested on human lung, colorectal and pancreatic adenocarcinoma cells in vitro in 2D, 3D and subcutaneous xenograft models of lung adenocarcinoma. Treatment effects on migration, proliferation, apoptosis, farnesylation and RAS signaling were measured by histopathological analyses, videomicroscopy, cell cycle analyses, immunoblot, immunofluorescence and RAS pulldown. RESULTS: Combination of tipifarnib with sotorasib shows synergistic inhibitory effects on lung adenocarcinoma cells in vitro in 2D and 3D. Mechanistically, we present antiproliferative effect of the combination and interference with compensatory HRAS activation and RHEB and lamin farnesylation. Enhanced efficacy of sotorasib in combination with tipifarnib is recapitulated in the subcutaneous xenograft model of lung adenocarcinoma. Finally, combination of additional KRAS G1C and farnesyl-transferase inhibitors also shows synergism in lung, colorectal and pancreatic adenocarcinoma cellular models. DISCUSSION: Our findings warrant the clinical exploration of KRAS-G12C inhibitors in combination with farnesyl-transferase inhibitors.
Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Colorretais , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Animais , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Transferases , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , MutaçãoRESUMO
Warm temperatures accelerate plant growth, but the underlying molecular mechanism is not fully understood. Here, we show that increasing the temperature from 22°C to 28°C rapidly activates proliferation in the apical shoot and root meristems of wild-type Arabidopsis seedlings. We found that one of the central regulators of cell proliferation, the cell cycle inhibitor RETINOBLASTOMA-RELATED (RBR), is suppressed by warm temperatures. RBR became hyper-phosphorylated at a conserved CYCLIN-DEPENDENT KINASE (CDK) site in young seedlings growing at 28°C, in parallel with the stimulation of the expressions of the regulatory CYCLIN D/A subunits of CDK(s). Interestingly, while under warm temperatures ectopic RBR slowed down the acceleration of cell proliferation, it triggered elongation growth of post-mitotic cells in the hypocotyl. In agreement, the central regulatory genes of thermomorphogenic response, including PIF4 and PIF7, as well as their downstream auxin biosynthetic YUCCA genes (YUC1-2 and YUC8-9) were all up-regulated in the ectopic RBR expressing line but down-regulated in a mutant line with reduced RBR level. We suggest that RBR has both canonical and non-canonical functions under warm temperatures to control proliferative and elongation growth, respectively.
RESUMO
INTRODUCTION: Since the 2018 change in the US adult heart allocation policy, more patients are bridged-to-transplant on temporary mechanical circulatory support (tMCS). Previous studies indicate that durable left ventricular assist devices (LVAD) may lead to allosensitization. The goal of this study was to assess whether tMCS implantation is associated with changes in sensitization. METHODS: We included patients evaluated for heart transplants between 2015 and 2022 who had alloantibody measured before and after MCS implantation. Allosensitization was defined as development of new alloantibodies after tMCS implant. RESULTS: A total of 41 patients received tMCS before transplant. Nine (22.0%) patients developed alloantibodies following tMCS implantation: 3 (12.0%) in the intra-aortic balloon pump group (n = 25), 2 (28.6%) in the microaxial percutaneous LVAD group (n = 7), and 4 (44.4%) in the veno-arterial extra-corporeal membrane oxygenation group (n = 9)-p = .039. Sensitized patients were younger (44.7 ± 11.6 years vs. 54.3 ± 12.5 years, p = .044), were more likely to be sensitized at baseline - 3 of 9 (33.3%) compared to 2 out of 32 (6.3%) (p = .028) and received more transfusions with red blood cells (6 (66.6%) vs. 8 (25%), p = .02) and platelets (6 (66.6%) vs. 5 (15.6%), p = .002). There was no significant difference in tMCS median duration of support (4 [3,15] days vs. 8.5 [5,14.5] days, p = .57). Importantly, out of the 11 patients who received a durable LVAD after tMCS, 5 (45.5%) became sensitized, compared to 4 out of 30 patients (13.3%) who only had tMCS-p = .028. CONCLUSIONS: Our findings suggest that patients bridged-to-transplant with tMCS, without significant blood product transfusions and a subsequent durable LVAD implant, have a low risk of allosensitization. Further studies are needed to confirm our findings and determine whether risk of sensitization varies by type of tMCS and duration of support.
Assuntos
Transplante de Coração , Coração Auxiliar , Isoanticorpos , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Isoanticorpos/imunologia , Isoanticorpos/sangue , Seguimentos , Adulto , Fatores de Risco , Prognóstico , Estudos Retrospectivos , Insuficiência Cardíaca/cirurgia , Insuficiência Cardíaca/terapia , Rejeição de Enxerto/etiologiaRESUMO
Signaling networks represent the molecular mechanisms controlling a cell's response to various internal or external stimuli. Most currently available signaling databases contain only a part of the complex network of intertwining pathways, leaving out key interactions or processes. Hence, we have developed SignaLink3 (http://signalink.org/), a value-added knowledge-base that provides manually curated data on signaling pathways and integrated data from several types of databases (interaction, regulation, localisation, disease, etc.) for humans, and three major animal model organisms. SignaLink3 contains over 400 000 newly added human protein-protein interactions resulting in a total of 700 000 interactions for Homo sapiens, making it one of the largest integrated signaling network resources. Next to H. sapiens, SignaLink3 is the only current signaling network resource to provide regulatory information for the model species Caenorhabditis elegans and Danio rerio, and the largest resource for Drosophila melanogaster. Compared to previous versions, we have integrated gene expression data as well as subcellular localization of the interactors, therefore uniquely allowing tissue-, or compartment-specific pathway interaction analysis to create more accurate models. Data is freely available for download in widely used formats, including CSV, PSI-MI TAB or SQL.
Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes/genética , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética , Animais , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Humanos , Peixe-Zebra/genéticaRESUMO
Many hematopoietic cell types express CD1d and are capable of presenting glycolipid antigens to invariant natural killer T cells (iNKT cells). However, the question of which cells are the principal presenters of glycolipid antigens in vivo remains controversial, and it has been suggested that this might vary depending on the structure of a particular glycolipid antigen. Here we have shown that a single type of cell, the CD8α(+) DEC-205(+) dendritic cell, was mainly responsible for capturing and presenting a variety of different glycolipid antigens, including multiple forms of α-galactosylceramide that stimulate widely divergent cytokine responses. After glycolipid presentation, these dendritic cells rapidly altered their expression of various costimulatory and coinhibitory molecules in a manner that was dependent on the structure of the antigen. These findings show flexibility in the outcome of two-way communication between CD8α(+) dendritic cells and iNKT cells, providing a mechanism for biasing toward either proinflammatory or anti-inflammatory responses.
Assuntos
Citocinas/metabolismo , Células Dendríticas/imunologia , Células T Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno , Antígenos/imunologia , Antígenos CD/metabolismo , Antígenos CD1d/metabolismo , Antígenos CD8/metabolismo , Comunicação Celular , Galactosilceramidas/imunologia , Regulação da Expressão Gênica/imunologia , Homeostase , Inflamação/imunologia , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Receptores de Superfície Celular/metabolismoRESUMO
OBJECTIVES: The paper proposes to identify the determinants of patients' rights awareness in mothers and to examine the relationship of health literacy with awareness of those rights. METHODS: Our results are based on data from a convenience sample of 894 non-health professional ethnic Hungarian mothers from Hungary, Romania and Slovakia. Health literacy is measured with the HLS-EU-16 questionnaire. RESULTS: Analysis of variance reveals a significant association of health literacy with patient rights awareness. Our results show that health literacy is the highest among patients who filed a complaint through formal channels and/or took legal measures to restore their rights upon violation. A logistic regression model is built to identify the likelihood of having high patient rights awareness, that is, acting formally for the restoration of rights upon infringement. The model controls for covariates. When controlled for covariates, the likelihood of having high patient rights awareness increases with age, and is higher for mothers with highest education, for inhabitants of larger towns, as well as for those with adequate health literacy. CONCLUSIONS: The findings of our study have implications for health policy, as they reveal significant inequalities in patient rights culture.
Assuntos
Letramento em Saúde , Feminino , Humanos , Hungria , Inquéritos e Questionários , Europa Oriental , Direitos do PacienteRESUMO
The E2F transcription factors and the RETINOBLASTOMA-RELATED repressor protein are principal regulators coordinating cell proliferation with differentiation, but their role during seed development is little understood. We show that in fully developed Arabidopsis thaliana embryos, cell number was not affected either in single or double mutants for the activator-type E2FA and E2FB Accordingly, these E2Fs are only partially required for the expression of cell cycle genes. In contrast, the expression of key seed maturation genes LEAFY COTYLEDON 1/2 (LEC1/2), ABSCISIC ACID INSENSITIVE 3, FUSCA 3 and WRINKLED 1 is upregulated in the e2fab double mutant embryo. In accordance, E2FA directly regulates LEC2, and mutation at the consensus E2F-binding site in the LEC2 promoter de-represses its activity during the proliferative stage of seed development. In addition, the major seed storage reserve proteins, 12S globulin and 2S albumin, became prematurely accumulated at the proliferating phase of seed development in the e2fab double mutant. Our findings reveal a repressor function of the activator E2Fs to restrict the seed maturation programme until the cell proliferation phase is completed.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição E2F/metabolismo , Sementes/crescimento & desenvolvimento , Albuminas/metabolismo , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ciclo Celular , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismoRESUMO
Cell cycle entry and quiescence are regulated by the E2F transcription factors in association with RETINOBLASTOMA-RELATED (RBR). E2FB is considered to be a transcriptional activator of cell cycle genes, but its function during development remains poorly understood. Here, by studying E2FB-RBR interaction, E2F target gene expression, and epidermal cell number and shape in e2fb mutant and overexpression lines during leaf development in Arabidopsis (Arabidopsis thaliana), we show that E2FB in association with RBR plays a role in the inhibition of cell proliferation to establish quiescence. In young leaves, both RBR and E2FB are abundant and form a repressor complex that is reinforced by an autoregulatory loop. Increased E2FB levels, either by expression driven by its own promoter or ectopically together with DIMERIZATION PARTNER A, further elevate the amount of this repressor complex, leading to reduced leaf cell number. Cell overproliferation in e2fb mutants and in plants overexpressing a truncated form of E2FB lacking the RBR binding domain strongly suggested that RBR repression specifically acts through E2FB. The increased number of small cells below the guard cells and of fully developed stomata indicated that meristemoids preferentially hyperproliferate. As leaf development progresses and cells differentiate, the amount of RBR and E2FB gradually declined. At this stage, elevation of E2FB level can overcome RBR repression, leading to reactivation of cell division in pavement cells. In summary, E2FB in association with RBR is central to regulating cell proliferation during organ development to determine final leaf cell number.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição E2F/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição E2F/genética , Regulação da Expressão Gênica de Plantas/genética , Mutação/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genéticaRESUMO
Allogeneic hematopoietic stem cell transplantation (HSCT) and coronavirus disease 2019 (COVID-19) infection can both lead to severe cytokine release syndrome (sCRS) resulting in critical illness and death. In this single institution, preliminary comparative case-series study we compared clinical and laboratory co-variates as well as response to tocilizumab (TCZ)-based therapy of 15 allogeneic-HSCT- and 17 COVID-19-associated sCRS patients. Reaction to a TCZ plus posttransplant cyclophosphamide (PTCY) consolidation therapy in the allogeneic-HSCT-associated sCRS group yielded significantly inferior long-term outcome as compared to TCZ-based therapy in the COVID-19-associated group (P = 0.003). We report that a TCZ followed by consolidation therapy with a Janus kinase/signal transducer and activator of transcription (JAK/STAT) inhibitor given to 4 out of 8 critically ill COVID-19 patients resulted in their complete recovery. Non-selective JAK/STAT inhibitors influencing the action of several cytokines exhibit a broader effect than TCZ alone in calming down sCRS. Serum levels of cytokines and chemokines show similar changes in allogeneic-HSCT- and COVID-19-associated sCRS with marked elevation of interleukin-6 (IL-6), regulated upon activation normal T-cell expressed and secreted (RANTES), monocyte chemoattractant protein-1 (MCP-1) and interferon γ-induced protein 10 kDa (IP-10) levels. In addition, levels of IL-5, IL-10, IL-15 were also elevated in allogeneic-HSCT-associated sCRS. Our multi-cytokine expression data indicate that the pathophysiology of allogeneic-HSCT and COVID-19-associated sCRS are similar therefore the same clinical grading system and TCZ-based treatment approaches can be applied. TCZ with JAK/STAT inhibitor consolidation therapy might be highly effective in COVID-19 sCRS patients.
RESUMO
BACKGROUND: Immunoassays based on label-free technologies (label-free immunoassay [LFIA]) offer an innovative approach to clinical diagnostics and demonstrate great promise for therapeutic drug monitoring (TDM) of monoclonal antibody (mAb) drugs. An LFIA measures immunocomplex formation in real time and allows for quantification on initial binding rate, which facilitates fast measurement within a few minutes. METHODS: Based on thin-film interferometry (TFI) technology, open-access LFIAs were developed for the quantification of the mAb drugs adalimumab (ADL) and infliximab (IFX) and for the detection of the antidrug antibodies (ADAs) to the mAb drugs (ADL-ADAs and IFX-ADAs). RESULTS: The LFIAs for active mAb drugs (ADL and IFX) and for ADAs (ADL-ADAs and IFX-ADAs) were validated. The analytical measurement range (AMR) for both ADL and IFX was from 2 to 100 µg/mL. The AMR for ADL-ADAs was from 5 to 100 µg/mL and for IFX-ADAs was 10 to 100 µg/mL. In the comparison of LFIAs and reporter gene assays, the correlation coefficient was 0.972 for the quantification of ADL and 0.940 for the quantification of IFX. The concordance rate was 90% for the detection of ADL-ADAs and 76% for the detection of IFX-ADAs. CONCLUSIONS: The LFIAs for active mAb drugs and ADAs were appropriate for the TDM of ADL and IFX. The TFI technology has unique advantages compared with other technologies used for the measurement of mAb drugs. Label-free technologies, especially those allowing for open-access LFIAs, have great potential for clinical diagnostics.
Assuntos
Adalimumab/sangue , Monitoramento de Medicamentos/métodos , Imunoensaio/métodos , Infliximab/sangue , Adalimumab/imunologia , Medicamentos Biossimilares/sangue , Humanos , Infliximab/imunologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we describe the structure of the human RAD51 NFs and of its Walker box mutants using electron microscopy. Wild-type RAD51 filaments adopt an 'open' conformation when compared to a 'closed' structure formed by mutants, reflecting alterations in helical pitch. The kinetics of formation/disassembly of RAD51 filaments show rapid and high ssDNA coverage via low cooperativity binding of RAD51 units along the DNA. Subsequently, a series of isomerization or dissociation events mediated by nucleotide binding state creates intrinsically dynamic RAD51 NFs. Our findings highlight important a mechanistic divergence among recombinases from different organisms, in line with the diversity of biological mechanisms of HR initiation and quality control. These data reveal unexpected intrinsic dynamic properties of the RAD51 filament during assembly/disassembly, which may be important for the proper control of homologous recombination.
Assuntos
DNA de Cadeia Simples/metabolismo , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Nucleotídeos de Adenina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Evolução Biológica , Microscopia Crioeletrônica , Humanos , Cinética , Modelos Moleculares , Mutação , Rad51 Recombinase/genéticaRESUMO
The RAS/RAF and PI3K/Akt pathways play a key regulatory role in cancer and are often hit by oncogenic mutations. Despite molecular targeting, the long-term success of monotherapy is often hampered by de novo or acquired resistance. In the case of concurrent mutations in both pathways, horizontal combination could be a reasonable approach. In our study, we investigated the MEK inhibitor selumetinib and PI3K/mTOR dual inhibitor BEZ235 alone and in combination in BRAF-only mutant and BRAF + PI3K/PTEN double mutant cancer cells using short- and long-term 2D viability assays, spheroid assays, and immunoblots. In the 2D assays, selumetinib was more effective on BRAF-only mutant lines when compared to BRAF + PI3K/PTEN double mutants. Furthermore, combination therapy had an additive effect in most of the lines while synergism was observed in two of the double mutants. Importantly, in the SW1417 BRAF + PI3K double mutant cells, synergism was also confirmed in the spheroid and in the in vivo model. Mechanistically, p-Akt level decreased only in the SW1417 cell line after combination treatment. In conclusion, the presence of concurrent mutations alone did not predict a stronger response to combination treatment. Therefore, additional investigations are warranted to identify predictive factors that can select patients who can benefit from the horizontal combinational inhibition of these two pathways.
Assuntos
MAP Quinase Quinase Quinases/metabolismo , Melanoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Imidazóis/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/genética , Melanoma/metabolismo , Camundongos , Camundongos Nus , Camundongos SCID , Mutação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Esferoides Celulares/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genéticaRESUMO
BACKGROUND: Monoclonal antibody therapeutics (MATs) represent a rapidly expanding class of biological drugs used to treat a variety of diseases. The widespread use of MATs increasingly affects clinical laboratory medicine. CONTENT: This review provides an overview of MATs currently approved for clinical use in the US, starting from basic biology of antibodies to the engineering, pharmacokinetic and pharmacodynamic properties, nomenclature, and production of MATs. Immunogenicity and the production of antidrug antibodies (ADAs) play a major role in loss of therapeutic response and the development of treatment failure to certain MATs. Laboratory-based monitoring for MATs and detection of ADAs represent emerging needs for optimizing the use of MATs to achieve the best outcomes at affordable cost. In addition, the increased use of MATs affects clinical laboratory testing by interference of MATs with clinical laboratory tests across different areas of laboratory medicine, including histocompatibility, blood bank, and monoclonal protein testing. SUMMARY: The number of MATs is rapidly growing each year to address previously unmet clinical needs. Laboratory monitoring of MATs and detecting ADAs represent expanding areas of laboratory testing. Test-based strategies allow for treatment optimization at the level of the individual patient, thus providing a personalized medicine approach. In addition, clinical laboratories must be aware that the increasing use of MATs affects laboratory testing and be ready to implement methods to eliminate or mitigate interference with clinical tests.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Doenças Autoimunes/terapia , Medicamentos Biossimilares/uso terapêutico , Técnicas de Laboratório Clínico/métodos , Humanos , Neoplasias/terapiaRESUMO
BACKGROUND AND OBJECTIVE: Spreading vasodilation is an important means of increasing local blood flow effectively during increased metabolic demands or in case of vascular injury. Our aim was to develop a technique proving the presence of spreading vasodilation in the human keratinized gingiva. METHODS: Local vasodilation was evoked by the application of nitric oxide (NO) donor nitroglycerin into a well, fixed 2 mm above the marginal gingiva, in 20 subjects with healthy periodontal tissue. Either 1 or 8 mg/mL nitroglycerin solutions were dropped into the test well at the upper right second incisor, and saline was applied into the control well at the upper left first incisor. The gingival blood flow (GBF) was recorded for 15 minutes by a laser speckle contrast imager below the well and in the surrounding area in the mesial, distal, apical and coronal directions. Gingival thickness was measured by an ultrasonic biometer. RESULTS: Peak GBF increase was similar after 1 mg/mL and after 8 mg/mL nitroglycerin application in the well (51% ± 12% vs 42% ± 8%) and in the apical region (33 ± 9% vs 55% ± 13%). While the lower dose of nitroglycerin increased GBF only in the apical region around the well, the higher dose induced significant elevations in all surrounding regions, with apical prominence. Hyperaemia lasted 10-14 minutes in the low-dose group whereas it extended beyond the observation period in the high-dose group. Neither the baseline nor the NO-induced peak GBF were correlated with gingival thickness. CONCLUSION: The role of the direct effect of NO in the regulation of perfusion was demonstrated in the human gingiva as well as the propagation of local vasodilation to distant, especially apical areas, probably by the mechanism of flow-mediated dilation. This mechanism may have a clinical importance for flap survival or wound healing.
Assuntos
Sequestradores de Radicais Livres , Gengiva , Óxido Nítrico , Vasodilatação , Sequestradores de Radicais Livres/farmacologia , Gengiva/efeitos dos fármacos , Humanos , Fluxometria por Laser-Doppler , Óxido Nítrico/farmacologia , Fluxo Sanguíneo RegionalRESUMO
OBJECTIVES: The aim of the present study was to investigate temporal and spatial blood flow patterns following vestibuloplasty procedures using a collagen matrix (CM) to get an insight into the timing and direction of neovascularization in the CM. METHODS: Five patients were treated using a modified apically repositioned flap combined with a CM. Intraoral photographs and blood flow measurements by laser speckle contrast imaging were taken for 12 months. Thirty regions of interest in the graft and the surrounding mucosa were evaluated. The clinical parameters were assessed after 6 and 12 months. VEGF expression was analyzed in the wound fluid on days 2 and 4. RESULTS: At 6 months, the mean width of keratinized gingiva increased, but the thickness was unchanged. Scar formation was observed in all cases. Perfusion in the graft began to increase at the lateral and coronal edges and then spread concentrically toward the center. The apical side showed a significant delay in perfusion, the highest VEGF expression, and wound fluid production as well as the most abundant scar formation. CONCLUSIONS: Neovascularization occurs mainly from the lateral and coronal edges, which may limit the extent of the surgical area. Abundant scar formation may be explained by increased VEGF expression induced by prolonged ischemia in this area.
Assuntos
Gengiva/transplante , Xenoenxertos , Mandíbula/cirurgia , Retalhos Cirúrgicos , Vestibuloplastia/efeitos adversos , Cicatrização/fisiologia , Adolescente , Adulto , Colágeno , Humanos , Queratinas , Cinética , Membranas Artificiais , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento , Vestibuloplastia/métodos , Adulto JovemRESUMO
Acquired resistance during BRAF inhibitor therapy remains a major challenge for melanoma treatment. Accordingly, we evaluated the phenotypical and molecular changes of isogeneic human V600E BRAF-mutant melanoma cell line pairs pre- and post-treatment with vemurafenib. Three treatment naïve lines were subjected to in vitro long-term vemurafenib treatment while three pairs were pre- and post-treatment patient-derived lines. Molecular and phenotypical changes were assessed by Sulforhodamine-B (SRB) assay, quantitative RT-PCR (q-RT-PCR), immunoblot, and time-lapse microscopy. We found that five out of six post-treatment cells had higher migration activity than pretreatment cells. However, no unequivocal correlation between increased migration and classic epithelial-mesenchymal transition (EMT) markers could be identified. In fast migrating cells, the microphthalmia-associated transcription factor (MITF) and epidermal growth factor receptor (EGFR) mRNA levels were considerably lower and significantly higher, respectively. Interestingly, high EGFR expression was associated with elevated migration but not with proliferation. Cells with high EGFR expression showed significantly decreased sensitivity to vemurafenib treatment, and had higher Erk activation and FRA-1 expression. Importantly, melanoma cells with higher EGFR expression were more resistant to the EGFR inhibitor erlotinib treatment than cells with lower expression, with respect to both proliferation and migration inhibition. Finally, EGFR-high melanoma cells were characterized by higher PD-L1 expression, which might in turn indicate that immunotherapy may be an effective approach in these cases.
Assuntos
Movimento Celular , Receptores ErbB/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Vemurafenib/uso terapêutico , Adulto , Idoso , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Melanoma/genética , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vemurafenib/farmacologiaRESUMO
Malignant melanoma is one of the most metastatic cancer types, and despite recent success with novel treatment strategies, there is still a group of patients who do not respond to any therapies. Earlier, the prenylation inhibitor hydrophilic bisphosphonate zoledronic acid (ZA) was found to inhibit melanoma growth in vitro, but only a weaker effect was observed in vivo due to its hydrophilic properties. Recently, lipophilic bisphosphonates (such as BPH1222) were developed. Accordingly, for the first time, we compared the effect of BPH1222 to ZA in eight melanoma lines using viability, cell-cycle, clonogenic and spheroid assays, videomicroscopy, immunoblot, and xenograft experiments. Based on 2D and spheroid assays, the majority of cell lines were more sensitive to BPH. The activation of Akt and S6 proteins, but not Erk, was inhibited by BPH. Additionally, BPH had a stronger apoptotic effect than ZA, and the changes of Rheb showed a correlation with apoptosis. In vitro, only M24met cells were more sensitive to ZA than to BPH; however, in vivo growth of M24met was inhibited more strongly by BPH. Here, we present that lipophilic BPH is more effective on melanoma cells than ZA and identify the PI3K pathway, particularly Rheb as an important mediator of growth inhibition.
Assuntos
Antineoplásicos/farmacologia , Conservadores da Densidade Óssea/farmacologia , Difosfonatos/farmacologia , Melanoma/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Melanoma/tratamento farmacológico , Melanoma/etiologia , Melanoma/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
OBJECTIVE: The reliability of gingival blood flow measured by Laser Speckle Contrast Imaging is unknown. Our aim was to investigate the effect of factors inherent in oral mucosa measurement on intra-day and inter-day reliability. METHODS: Gingival blood flow was measured in seventy healthy subjects. First, measurements were obtained by varying the incidence angle of imaging, using a lip retractor. Second, 3 snapshots were taken with closure of the mouth in-between, and lips were retracted by a dental mirror. These were repeated 1 week later. Third, snapshots were taken either by direct view or using a mirror. Reliability was assessed based on coefficient of variation. RESULTS: Unlike retraction of the lips and the mirror, the incidence angle had an effect on mean blood flow. The coefficient of variation within a subject was 6.4% with the mouth constantly open. With retraction, the intra-session, and the inter-day coefficient of variation were 8.3% and 10.5%, respectively. The coefficient of variation was 11.9% by alternating direct and indirect imaging. CONCLUSIONS: Laser Speckle Contrast Imaging has good short- and long-term reliability regardless of lip retraction or an indirect view. This technique seems to be appropriate for the long-term clinical non-invasive follow-up of gingival microcirculation.
Assuntos
Velocidade do Fluxo Sanguíneo , Gengiva/irrigação sanguínea , Fluxometria por Laser-Doppler/métodos , Adulto , Gengiva/diagnóstico por imagem , Humanos , Fluxometria por Laser-Doppler/normas , Microcirculação , Mucosa Bucal/irrigação sanguínea , Reprodutibilidade dos Testes , Adulto JovemRESUMO
OBJECTIVE: The rate of blood flow between the various areas of the gingiva in resting position and under challenge is unknown. In this study, the LSCI method was used to map spatial and temporal changes in gingival blood flow after transient compression. METHODS: Horizontal, vertical, and papilla base compressions were applied on the attached gingiva in 21 healthy patients (13 women, 8 men). LSCI was used to determine dynamic changes in regional blood flow during a five-second occlusion interval and subsequent reperfusion for twenty minutes. RESULTS: Resting blood flow in the attached gingiva apical to the papillae was higher as compared to that in the midbuccal area of the teeth. During short-term horizontal compression, ischemia was greater coronal than apical to the occlusion line. Postocclusive hyperemia was observed not only in the regions affected by ischemia but encompassed a wider area. Hyperemic response was more pronounced and prolonged in male than in female patients. CONCLUSIONS: Blood flow in the attached gingiva shows spatial differences. Our findings corroborate the apicocoronal orientation of blood circulation. Periodontal and papillary collaterals may have little role in the blood supply of the adjacent attached gingiva under physiological conditions.