RESUMO
This study investigates the biomechanics of type 2 diabetic bone fragility through a multiscale experimental strategy that considers structural, mechanical, and compositional components of ex vivo human trabecular and cortical bone. Human tissue samples were obtained from the femoral heads of patients undergoing total hip replacement. Mechanical testing was carried out on isolated trabecular cores using monotonic and cyclic compression loading and nanoindentation experiments, with bone microdamage analysed using micro-computed tomography (CT) imaging. Bone composition was evaluated using Raman spectroscopy, high-performance liquid chromatography, and fluorometric spectroscopy. It was found that human type 2 diabetic bone had altered mechanical, compositional, and morphological properties compared to non-type 2 diabetic bone. High-resolution micro-CT imaging showed that cores taken from the central trabecular region of the femoral head had higher bone mineral density (BMD), bone volume, trabecular thickness, and reduced trabecular separation. Type 2 diabetic bone also had enhanced macro-mechanical compressive properties under mechanical loading compared to non-diabetic controls, with significantly higher apparent modulus, yield stress, and pre-yield toughness evident, even when properties were normalised against the bone volume. Using nanoindentation, there were no significant differences in the tissue-level mechanical properties of cortical or trabecular bone in type 2 diabetic samples compared to controls. Through compositional analysis, higher levels of furosine were found in type 2 diabetic trabecular bone, and an increase in both furosine and carboxymethyl-lysine (an advanced glycation end-product) was found in cortical bone. Raman spectroscopy showed that type 2 diabetic bone had a higher mineral-to-matrix ratio, carbonate substitution, and reduced crystallinity compared to the controls. Together, this study shows that type 2 diabetes leads to distinct changes in both organic and mineral phases of the bone tissue matrix, but these changes did not coincide with any reduction in the micro- or macro-mechanical properties of the tissue under monotonic or cyclic loading.
Assuntos
Diabetes Mellitus Tipo 2 , Microtomografia por Raio-X , Humanos , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Fenômenos Biomecânicos , Idoso , Feminino , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Osso e Ossos/diagnóstico por imagem , Masculino , Análise Espectral Raman , Densidade Óssea/fisiologia , Osso Esponjoso/patologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiopatologia , Pessoa de Meia-Idade , Estresse MecânicoRESUMO
Individuals with Type-2 Diabetes (T2D) have an increased risk of bone fracture, without a reduction in bone mineral density. It is hypothesised that the hyperglycaemic state caused by T2D forms an excess of Advanced Glycated End-products (AGEs) in the organic matrix of bone, which are thought to stiffen the collagen network and lead to impaired mechanical properties. However, the mechanisms are not well understood. This study aimed to investigate the geometrical, structural and material properties of diabetic cortical bone during the development and progression of T2D in ZDF (fa/fa) rats at 12-, 26- and 46-weeks of age. Longitudinal bone growth was impaired as early as 12-weeks of age and by 46-weeks bone size was significantly reduced in ZDF (fa/fa) rats versus controls (fa/+). Diabetic rats had significant structural deficits, such as bending rigidity, ultimate moment and energy-to-failure measured via three-point bend testing. Tissue material properties, measured by taking bone geometry into account, were altered as the disease progressed, with significant reductions in yield and ultimate strength for ZDF (fa/fa) rats at 46-weeks. FTIR analysis on cortical bone powder demonstrated that the tissue material deficits coincided with changes in tissue composition, in ZDF (fa/fa) rats with long-term diabetes having a reduced carbonate:phosphate ratio and increased acid phosphate content when compared to age-matched controls, indicative of an altered bone turnover process. AGE accumulation, measured via fluorescent assays, was higher in the skin of ZDF (fa/fa) rats with long-term T2D, bone AGEs did not differ between strains and neither AGEs correlated with bone strength. In conclusion, bone fragility in the diabetic ZDF (fa/fa) rats likely occurs through a multifactorial mechanism influenced initially by impaired bone growth and development and proceeding to an altered bone turnover process that reduces bone quality and impairs biomechanical properties as the disease progresses.