Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Malar J ; 19(1): 319, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883308

RESUMO

BACKGROUND: The use of molecular diagnostics has revealed an unexpectedly large number of asymptomatic low-density malaria infections in many malaria endemic areas. This study compared the gains in parasite prevalence obtained by the use of ultra-sensitive (us)-qPCR as compared to standard qPCR in cross-sectional surveys conducted in Thailand, Brazil and Papua New Guinea (PNG). The compared assays differed in the copy number of qPCR targets in the parasite genome. METHODS: Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) parasites were quantified by qPCR amplifying the low-copy Pf_ and Pv_18S rRNA genes or the multi-copy targets Pf_varATS and Pv_mtCOX1. Cross-sectional surveys at the three study sites included 2252 participants of all ages and represented different transmission intensities. RESULTS: In the two low-transmission areas, P. falciparum positivity was 1.3% (10/773) (Thailand) and 0.8% (5/651) (Brazil) using standard Pf_18S rRNA qPCR. In these two countries, P. falciparum positivity by Pf_varATS us-qPCR increased to 1.9% (15/773) and 1.7% (11/651). In PNG, an area with moderate transmission intensity, P. falciparum positivity significantly increased from 8.6% (71/828) by standard qPCR to 12.2% (101/828) by us-qPCR. The proportions of P. falciparum infections not detected by standard qPCR were 33%, 55% and 30% in Thailand, Brazil and PNG. Plasmodium vivax was the predominating species in Thailand and Brazil, with 3.9% (30/773) and 4.9% (32/651) positivity by Pv_18S rRNA qPCR. In PNG, P. vivax positivity was similar to P. falciparum, at 8.0% (66/828). Use of Pv_mtCOX1 us-qPCR led to a significant increase in positivity to 5.1% (39/773), 6.4% (42/651) and 11.5% (95/828) in Thailand, Brazil, and PNG. The proportions of P. vivax infections missed by standard qPCR were similar at all three sites, with 23%, 24% and 31% in Thailand, Brazil and PNG. CONCLUSION: The proportional gains in the detection of P. falciparum and P. vivax infections by ultra-sensitive diagnostic assays were substantial at all three study sites. Thus, us-qPCR yields more precise prevalence estimates for both P. falciparum and P. vivax at all studied levels of endemicity and represents a significant diagnostic improvement. Improving sensitivity in P. vivax surveillance by us-qPCR is of particular benefit, because the additionally detected P. vivax infections signal the potential presence of hypnozoites and subsequent risk of relapse and further transmission.


Assuntos
Estudos Transversais/métodos , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Brasil/epidemiologia , Malária Falciparum/transmissão , Malária Vivax/transmissão , Papua Nova Guiné/epidemiologia , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Prevalência , Sensibilidade e Especificidade , Tailândia/epidemiologia
2.
Malar J ; 17(1): 55, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378609

RESUMO

A distinctive feature of Plasmodium vivax infections is the overall low parasite density in peripheral blood. Thus, identifying asymptomatic infected individuals in endemic communities requires diagnostic tests with high sensitivity. The detection limits of molecular diagnostic tests are primarily defined by the volume of blood analysed and by the copy number of the amplified molecular marker serving as the template for amplification. By using mitochondrial DNA as the multi-copy template, the detection limit can be improved more than tenfold, compared to standard 18S rRNA targets, thereby allowing detection of lower parasite densities. In a very low transmission area in Brazil, application of a mitochondrial DNA-based assay increased prevalence from 4.9 to 6.5%. The usefulness of molecular tests in malaria epidemiological studies is widely recognized, especially when precise prevalence rates are desired. Of concern, however, is the challenge of demonstrating test accuracy and quality control for samples with very low parasite densities. In this case, chance effects in template distribution around the detection limit constrain reproducibility. Rigorous assessment of false positive and false negative test results is, therefore, required to prevent over- or under-estimation of parasite prevalence in epidemiological studies or when monitoring interventions.


Assuntos
Malária Vivax , Técnicas de Diagnóstico Molecular , Plasmodium vivax/genética , Saúde Pública , DNA de Protozoário/análise , DNA de Protozoário/genética , Humanos , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , RNA Ribossômico 18S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA