Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 117(7): 622-33, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26195221

RESUMO

RATIONALE: In chronic heart failure, increased adrenergic activation contributes to structural remodeling and altered gene expression. Although adrenergic signaling alters histone modifications, it is unknown, whether it also affects other epigenetic processes, including DNA methylation and its recognition. OBJECTIVE: The aim of this study was to identify the mechanism of regulation of the methyl-CpG-binding protein 2 (MeCP2) and its functional significance during cardiac pressure overload and unloading. METHODS AND RESULTS: MeCP2 was identified as a reversibly repressed gene in mouse hearts after transverse aortic constriction and was normalized after removal of the constriction. Similarly, MeCP2 repression in human failing hearts resolved after unloading by a left ventricular assist device. The cluster miR-212/132 was upregulated after transverse aortic constriction or on activation of α1- and ß1-adrenoceptors and miR-212/132 led to repression of MeCP2. Prevention of MeCP2 repression by a cardiomyocyte-specific, doxycycline-regulatable transgenic mouse model aggravated cardiac hypertrophy, fibrosis, and contractile dysfunction after transverse aortic constriction. Ablation of MeCP2 in cardiomyocytes facilitated recovery of failing hearts after reversible transverse aortic constriction. Genome-wide expression analysis, chromatin immunoprecipitation experiments, and DNA methylation analysis identified mitochondrial genes and their transcriptional regulators as MeCP2 target genes. Coincident with its repression, MeCP2 was removed from its target genes, whereas DNA methylation of MeCP2 target genes remained stable during pressure overload. CONCLUSIONS: These data connect adrenergic activation with a microRNA-MeCP2 epigenetic pathway that is important for cardiac adaptation during the development and recovery from heart failure.


Assuntos
Adaptação Fisiológica/fisiologia , Epigênese Genética/fisiologia , Insuficiência Cardíaca/metabolismo , Proteína 2 de Ligação a Metil-CpG/biossíntese , Receptores Adrenérgicos/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Doença Crônica , Insuficiência Cardíaca/genética , Humanos , Proteína 2 de Ligação a Metil-CpG/antagonistas & inibidores , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Ratos , Receptores Adrenérgicos/genética
2.
J Mol Cell Cardiol ; 101: 145-155, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27789290

RESUMO

AIMS: Biglycan, a small leucine-rich proteoglycan, has been shown to play an important role in stabilizing fibrotic scars after experimental myocardial infarction. However, the role of biglycan in the development and regression of cardiomyocyte hypertrophy and fibrosis during cardiac pressure overload and unloading remains elusive. Thus, the aim of the present study was to assess the effect of biglycan on cardiac remodeling in a mouse model of left ventricular pressure overload and unloading. METHODS AND RESULTS: Left ventricular pressure overload induced by transverse aortic constriction (TAC) in mice resulted in left ventricular dysfunction, fibrosis and increased biglycan expression. Fluorescence- and magnetic-assisted sorting of cardiac cell types revealed upregulation of biglycan in the fibroblast population, but not in cardiomyocytes, endothelial cells or leukocytes after TAC. Removal of the aortic constriction (rTAC) after short-term pressure overload (3weeks) improved cardiac contractility and reversed ventricular hypertrophy but not fibrosis in wild-type (WT) mice. Biglycan ablation (KO) enhanced functional recovery but did not resolve cardiac fibrosis. After long-term TAC for 9weeks, ablation of biglycan attenuated the development of cardiac hypertrophy and fibrosis. In vitro, biglycan induced hypertrophy of neonatal rat cardiomyocytes and led to activation of a hypertrophic gene program. Putative downstream mediators of biglycan signaling include Rcan1, Abra and Tnfrsf12a. These genes were concordantly induced by TAC in WT but not in biglycan KO mice. CONCLUSIONS: Left ventricular pressure overload induces biglycan expression in cardiac fibroblasts. Ablation of biglycan improves cardiac function and attenuates left ventricular hypertrophy and fibrosis after long-term pressure overload. In vitro biglycan induces hypertrophy of cardiomyocytes, suggesting that biglycan may act as a signaling molecule between cell types to modulate cardiac remodeling.


Assuntos
Biglicano/deficiência , Biglicano/metabolismo , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Animais , Cardiomegalia/diagnóstico , Modelos Animais de Doenças , Ecocardiografia , Feminino , Fibrose , Hipertrofia Ventricular Esquerda/diagnóstico , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteoma , Proteômica , Ratos , Remodelação Ventricular
3.
Front Oncol ; 13: 1180642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384298

RESUMO

Objective: Head and neck cancer (HNC) accounts for almost 890,000 new cases per year. Radiotherapy (RT) is used to treat the majority of these patients. A common side-effect of RT is the onset of oral mucositis, which decreases the quality of life and represents the major dose-limiting factor in RT. To understand the origin of oral mucositis, the biological mechanisms post-ionizing radiation (IR) need to be clarified. Such knowledge is valuable to develop new treatment targets for oral mucositis and markers for the early identification of "at-risk" patients. Methods: Primary keratinocytes from healthy volunteers were biopsied, irradiated in vitro (0 and 6 Gy), and subjected to mass spectrometry-based analyses 96 h after irradiation. Web-based tools were used to predict triggered biological pathways. The results were validated in the OKF6 cell culture model. Immunoblotting and mRNA validation was performed and cytokines present in cell culture media post-IR were quantified. Results: Mass spectrometry-based proteomics identified 5879 proteins in primary keratinocytes and 4597 proteins in OKF6 cells. Amongst them, 212 proteins in primary keratinocytes and 169 proteins in OKF6 cells were differentially abundant 96 h after 6 Gy irradiation compared to sham-irradiated controls. In silico pathway enrichment analysis predicted interferon (IFN) response and DNA strand elongation pathways as mostly affected pathways in both cell systems. Immunoblot validations showed a decrease in minichromosome maintenance (MCM) complex proteins 2-7 and an increase in IFN-associated proteins STAT1 and ISG15. In line with affected IFN signalling, mRNA levels of IFNß and interleukin 6 (IL-6) increased significantly following irradiation and also levels of secreted IL-1ß, IL-6, IP-10, and ISG15 were elevated. Conclusion: This study has investigated biological mechanisms in keratinocytes post-in vitro ionizing radiation. A common radiation signature in keratinocytes was identified. The role of IFN response in keratinocytes along with increased levels of pro-inflammatory cytokines and proteins could hint towards a possible mechanism for oral mucositis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA