Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 23(6): 176, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35750968

RESUMO

Process simulation facilitates scale-up of hot-melt extrusion (HME) and enhances proper understanding of the underlying critical process parameters. However, performing numeric simulations requires profound knowledge of the employed materials' properties. For example, an accurate description of the compounds' melt rheology is paramount for proper simulations. Hence, sample preparation needs to be optimized to yield results as predictive as possible. To identify the optimal preparation method for small amplitude oscillatory shear (SAOS) rheological measurements, binary mixtures of hydroxypropylmethylcellulose acetate succinate or methacrylic acid ethyl acrylate copolymer (Eudragit L100-55) together with the model drugs celecoxib and ketoconazole were prepared. The physical powder mixtures were introduced into the SAOS as a compressed tablet or a disk prepared via vacuum compression molding (VCM). Simulations with the derived parameters were conducted and compared to lab-scale extrusion trials. VCM was identified as the ideal preparation method resulting in the highest similarity between simulated and experimental values, while simulation based on conventional powder-based methods insufficiently described the HME process.


Assuntos
Transtorno do Espectro Autista , Tecnologia de Extrusão por Fusão a Quente , Composição de Medicamentos/métodos , Temperatura Alta , Humanos , Pós , Solubilidade , Comprimidos
2.
AAPS PharmSciTech ; 22(1): 44, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33438107

RESUMO

Among the great number of poorly soluble drugs in pharmaceutical development, most of them are weak bases. Typically, they readily dissolve in an acidic environment but are prone to precipitation at elevated pH. This was aimed to be counteracted by the preparation of amorphous solid dispersions (ASDs) using the pH-dependent soluble polymers methacrylic acid ethylacrylate copolymer (Eudragit L100-55) and hydroxypropylmethylcellulose acetate succinate (HPMCAS) via hot-melt extrusion. The hot-melt extruded ASDs were of amorphous nature and single phased with the presence of specific interactions between drug and polymer as revealed by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR). The ASDs were milled and classified into six particle size fractions. We investigated the influence of particle size, drug load, and polymer type on the dissolution performance. The best dissolution performance was achieved for the ASD made from Eudragit L100-55 at a drug load of 10%, whereby the dissolution rate was inversely proportional to the particle size. Within a pH-shift dissolution experiment (from pH 1 to pH 6.8), amorphous-amorphous phase separation occurred as a result of exposure to acidic medium which caused markedly reduced dissolution rates at subsequent higher pH values. Phase separation could be prevented by using enteric capsules (Vcaps Enteric®), which provided optimal dissolution profiles for the Eudragit L100-55 ASD at a drug load of 10%.


Assuntos
Antifúngicos/química , Cetoconazol/química , Tamanho da Partícula , Resinas Acrílicas/química , Varredura Diferencial de Calorimetria , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Metacrilatos , Metilcelulose/análogos & derivados , Metilcelulose/química , Preparações Farmacêuticas/química , Polímeros , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Pharmaceutics ; 15(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36678785

RESUMO

PROteolysis TArgeting Chimaeras (PROTACs) offer new opportunities in modern medicine by targeting proteins that are undruggable to classic inhibitors. However, due to their hydrophobic structure, PROTACs typically suffer from low solubility, and oral bioavailability remains challenging. At the same time, due to their investigative state, the drug supply is meager, leading to limited possibilities in terms of formulation development. Therefore, we investigated the solubility enhancement employing mini-scale formulations of amorphous solid dispersions (ASDs) and liquisolid formulations of the prototypic PROTAC ARCC-4. Based on preliminary supersaturation testing, HPMCAS (L Grade) and Eudragit® L 100-55 (EL 100-55) were demonstrated to be suitable polymers for supersaturation stabilization of ARCC-4. These two polymers were selected for preparing ASDs via vacuum compression molding (VCM), using drug loads of 10 and 20%, respectively. The ASDs were subsequently characterized with respect to their solid state via differential scanning calorimetry (DSC). Non-sink dissolution testing revealed that the physical mixtures (PMs) did not improve dissolution. At the same time, all ASDs enabled pronounced supersaturation of ARCC-4 without precipitation for the entire dissolution period. In contrast, liquisolid formulations failed in increasing ARCC-4 solubility. Hence, we demonstrated that ASD formation is a promising principle to overcome the low solubility of PROTACs.

4.
Int J Pharm X ; 3: 100076, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33851133

RESUMO

Using polymers as additives to formulate ternary amorphous solid dispersions (ASDs) has successfully been established to increase the bioavailability of poorly soluble drugs, when one polymer is not able to provide both, stabilizing the drug in the matrix and the supersaturated solution. Therefore, we investigated the influence of low-viscosity hydroxypropyl cellulose (HPC) polymers as an additive in HPMC based ternary ASD formulations made by hot-melt extrusion (HME) on the bioavailability of itraconazole (ITZ). The partitioning potential of the different HPC grades was screened in biphasic supersaturation assays. Solid-state analytics were performed using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD). The addition of HPCs, especially HPC-UL, resulted in a superior partitioned amount of ITZ in biphasic supersaturation assays. Moreover, the approach in using HPCs as an additive in HPMC based ASDs led to an increase in partitioned ITZ compared to Sporanox® in biorelevant biphasic dissolution studies. The results from the biphasic dissolution experiments correlated well with the in vivo studies, which revealed the highest oral bioavailability for the ternary ASD comprising HPC-UL and HPMC.

5.
ACS Med Chem Lett ; 12(11): 1733-1738, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795861

RESUMO

Proteolysis targeting chimeras (PROTACs) hijacking the cereblon (CRBN) E3 ubiquitin ligase have emerged as a novel paradigm in drug development. Herein we found that linker attachment points of CRBN ligands highly affect their aqueous stability and neosubstrate degradation features. This work provides a blueprint for the assembly of future heterodimeric CRBN-based degraders with tailored properties.

6.
Pharmaceutics ; 12(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545270

RESUMO

Amorphous solid dispersions (ASDs) have been proven to increase the bioavailability of poorly soluble drugs. It is desirable that the ASD provide a rapid dissolution rate and a sufficient stabilization of the generated supersaturation. In many cases, one polymer alone is not able to provide both features, which raises a need for reasonable polymer combinations. In this study we aimed to generate a rapidly dissolving ASD using the hydrophilic polymer polyvinyl alcohol (PVA) combined with a suitable precipitation inhibitor. Initially, PVA and hydroxypropylmethylcellulose acetate succinate (HPMCAS) were screened for their precipitation inhibitory potential for celecoxib in solution. The generated supersaturation in presence of PVA or HPMCAS was further characterized using dynamic light scattering. Binary ASDs of either PVA or HPMCAS (at 10% and 20% drug load) were prepared by hot-melt extrusion and solid-state analytics were conducted using differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and fourier-transformed infrared spectroscopy (FT-IR). The non-sink dissolution studies of the binary ASDs revealed a high dissolution rate for the PVA ASDs with subsequent precipitation and for the HPMCAS ASDs a suppressed dissolution. In order to utilize the unexploited potential of the binary ASDs, the PVA ASDs were combined with HPMCAS either predissolved or added as powder and also formulated as ternary ASD. We successfully generated a solid formulation consisting of the powdered PVA ASD and HPMCAS powder, which was superior in monophasic non-sink dissolution and biorelevant biphasic dissolution studies compared to the binary and ternary ASDs.

7.
Pharmaceutics ; 12(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283725

RESUMO

The preparation of amorphous solid dispersions (ASDs) is a suitable approach to overcome solubility-limited absorption of poorly soluble drugs. In particular, pH-dependent soluble polymers have proven to be an excellently suitable carrier material for ASDs. Polyvinyl acetate phthalate (PVAP) is a polymer with a pH-dependent solubility, which is as yet not thoroughly characterized regarding its suitability for a hot-melt extrusion process. The objective of this study was to assess the processability of PVAP within a hot-melt extrusion process with the aim of preparing an ASD. Therefore, the influence of different process parameters (temperature, feed-rate) on the degree of degradation, solid-state and dissolution time of the neat polymer was studied. Subsequently, drug-containing ASDs with indomethacin (IND) and dipyridamole (DPD) were prepared, respectively, and analyzed regarding drug content, solid-state, non-sink dissolution performance and storage stability. PVAP was extrudable in combination with 10% (w/w) PEG 3000 as plasticizer. The dissolution time of PVAP was only slightly influenced by different process parameters. For IND no degradation occurred in combination with PVAP and single phased ASDs could be generated. The dissolution performance of the IND-PVAP ASD at pH 5.5 was superior and at pH 6.8 equivalent compared to commonly used polymers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and Eudragit L100-55.

8.
Int J Pharm ; 591: 119941, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33065223

RESUMO

Melt granules of DI-CAFOS® A12 and 15% (w/w) Kolliphor® P407 were manufactured in a twin-screw granulator (TSG) at five different conditions (screw speed and throughput varied) and compared to granules manufactured in a high-shear granulator (HSG) (rotation speed of chopper/impeller and granulation time varied). Evaluated granules characteristics were process yield, particle-size distribution (PSD), particle morphology, flowability, porosity, specific surface area (SSA), tabletability, compressibility and binder distribution. Compared to TSG, granules produced from HSG were more spherical in shape with lower porosity, smaller mean particle size and a superior flowability. Granules made by TSG showed a more elongated structure, higher porosity and larger mean particle size with smaller SSA instead. Concerning the compression process of granules, tablets made of TSG granules exhibited a higher tabletability compared to HSG granules, whereas the compressibility remained similar. In the case of the TSG granules, energy-dispersive-X-ray (EDX) measurements of the tablet surface indicated an enhanced homogenous binder distribution. Additionally, the EDX-analyses determined that more binder was available between the individual particles, resulting in a stronger bonding.


Assuntos
Excipientes , Tecnologia Farmacêutica , Composição de Medicamentos , Tamanho da Partícula , Porosidade , Comprimidos
9.
Chem Sci ; 11(13): 3474-3486, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33133483

RESUMO

Cyclin-dependent kinase 6 (CDK6) is an important regulator of the cell cycle. Together with CDK4, it phosphorylates and inactivates retinoblastoma (Rb) protein. In tumour cells, CDK6 is frequently upregulated and CDK4/6 kinase inhibitors like palbociclib possess high activity in breast cancer and other malignancies. Besides its crucial catalytic function, kinase-independent roles of CDK6 have been described. Therefore, targeted degradation of CDK6 may be advantageous over kinase inhibition. Proteolysis targeting chimeras (PROTACs) structurally based on the cereblon (CRBN) ligand thalidomide have recently been described to degrade the targets CDK4/6. However, CRBN-based PROTACs have several limitations including the remaining activity of immunomodulatory drugs (IMiDs) on Ikaros transcription factors as well as CRBN inactivation as a resistance mechanism in cancer. Here, we systematically explored the chemical space of CDK4/6 PROTACs by addressing different E3 ligases and connecting their respective small-molecule binders via various linkers to palbociclib. The spectrum of CDK6-specific PROTACs was extended to von Hippel Lindau (VHL) and cellular inhibitor of apoptosis protein 1 (cIAP1) that are essential for most cancer cells and therefore less likely to be inactivated. Our VHL-based PROTAC series included compounds that were either specific for CDK6 or exhibited dual activity against CDK4 and CDK6. IAP-based PROTACs caused a combined degradation of CDK4/6 and IAPs resulting in synergistic effects on cancer cell growth. Our new degraders showed potent and long-lasting degrading activity in human and mouse cells and inhibited proliferation of several leukemia, myeloma and breast cancer cell lines. In conclusion, we show that VHL- and IAP-based PROTACs are an attractive approach for targeted degradation of CDK4/6 in cancer.

10.
Int J Pharm ; 564: 162-170, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30991134

RESUMO

Several drugs are pH-dependent soluble weak bases with a poor solubility in the intestinal pH range. Additionally a variable gastric pH, which is a common issue in the population, potentially reduces the in-vivo performance due to reduced solubility at elevated pH. Aiming to avoid the influence of variable gastric pH on the dissolution performance, enteric polymers - hydroxypropylmethylcellulose acetate succinate (HPMCAS), hydroxypropylmethylcellulose phthalate (HP-55, HP-50) and methacrylic acid ethylacrylate copolymer (Eudragit L100-55) together with nevirapine as model drug were used for the preparation of solid dispersions by hot-melt extrusion. We were able to generate solid dispersions without crystalline residuals. The resulting solid dispersions were further tested for stability and dissolution performance applying two different pH-shift experiments (non-sink conditions), to simulate standard and altered gastric conditions. Solid dispersions made of enteric polymers were independent to gastric pH variability and exhibited superior dissolution performances compared to their respective physical mixtures and neat nevirapine.


Assuntos
Nevirapina/química , Polímeros/química , Disponibilidade Biológica , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Plastificantes/química , Solubilidade , Estômago/química
11.
Medchemcomm ; 10(6): 1037-1041, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31304001

RESUMO

A modular chemistry toolbox was developed for cereblon-directed PROTACs. A variety of linkers was attached to a CRBN ligand via the 4-amino position of pomalidomide. We used linkers of different constitution to modulate physicochemical properties. We equipped one terminus of the linker with a set of functional groups, e.g. protected amines, protected carboxylic acids, alkynes, chloroalkanes, and protected alcohols, all of which are considered to be attractive for PROTAC design. We also highlight different opportunities for the expansion of the medicinal chemists' PROTAC toolbox towards heterobifunctional molecules, e.g. with biotin, fluorescent, hydrophobic and peptide tags.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA