Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Cytokine ; 166: 156192, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37054665

RESUMO

AIMS: The consumption of highly refined carbohydrates increases systemic inflammatory markers, but its potential to exert direct myocardial inflammation is uncertain. Herein, we addressed the impact of a high-refined carbohydrate (HC) diet on mice heart and local inflammation over time. MAIN METHODS: BALB/c mice were fed with a standard chow (control) or an isocaloric HC diet for 2, 4, or 8 weeks (HC groups), in which the morphometry of heart sections and contractile analyses by invasive catheterization and Langendorff-perfused hearts were assessed. Cytokines levels by ELISA, matrix metalloproteinase (MMP) activity by zymography, in situ reactive oxygen species (ROS) staining and lipid peroxidation-induced TBARS levels, were also determined. KEY FINDINGS: HC diet fed mice displayed left ventricular hypertrophy and interstitial fibrosis in all times analyzed, which was confirmed by echocardiographic analyses of 8HC group. Impaired contractility indices of HC groups were observed by left ventricular catheterization, whereas ex vivo and in vitro indices of contraction under isoprenaline-stimulation were higher in HC-fed mice compared with controls. Peak levels of TNF-α, TGF-ß, ROS, TBARS, and MMP-2 occur independently of HC diet time. However, a long-lasting local reduction of the anti-inflammatory cytokine IL-10 was found, which was linearly correlated to the decline of systolic function in vivo. SIGNIFICANCE: Altogether, the results indicate that short-term consumption of HC diet negatively impacts the balance of anti-inflammatory defenses and proinflammatory/profibrotic mediators in the heart, which can contribute to HC diet-induced morphofunctional cardiac alterations.


Assuntos
Tecido Adiposo , Citocinas , Animais , Camundongos , Carboidratos da Dieta , Espécies Reativas de Oxigênio , Substâncias Reativas com Ácido Tiobarbitúrico , Dieta , Inflamação
2.
Am J Physiol Cell Physiol ; 318(4): C740-C750, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913703

RESUMO

Overstimulation of the renin-angiotensin system (RAS) has been implicated in the pathogenesis of various cardiovascular diseases. Alamandine is a peptide newly identified as a protective component of the RAS; however, the mechanisms involved in its beneficial effects remain elusive. By using a well-characterized rat model of hypertension, the TGR (mREN2)27, we show that mREN ventricular myocytes are prone to contractile enhancement mediated by short-term alamandine (100 nmol/L) stimulation of Mas-related G protein-coupled receptor member D (MrgD) receptors, while Sprague-Dawley control cells showed no effect. Additionally, alamandine prevents the Ca2+ dysregulation classically exhibited by freshly isolated mREN myocytes. Accordingly, alamandine treatment of mREN myocytes attenuated Ca2+ spark rate and enhanced Ca2+ reuptake to the sarcoplasmic reticulum. Along with these findings, KN-93 fully inhibited the alamandine-induced increase in Ca2+ transient magnitude and phospholamban (PLN) phosphorylation at Thr17, indicating CaMKII as a downstream effector of the MrgD signaling pathway. In mREN ventricular myocytes, alamandine treatment induced significant nitric oxide (NO) production. Importantly, NO synthase inhibition prevented the contractile actions of alamandine, including PLN-Thr17 phosphorylation at the CaMKII site, thereby indicating that NO acts upstream of CaMKII in the alamandine downstream signaling. Altogether, our results show that enhanced contractile responses mediated by alamandine in cardiomyocytes from hypertensive rats occur through a NO-dependent activation of CaMKII.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oligopeptídeos/farmacologia , Retículo Sarcoplasmático/efeitos dos fármacos , Animais , Proteínas de Ligação ao Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA