Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nucleic Acids Res ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373474

RESUMO

Poly(UG) or 'pUG' dinucleotide repeats are highly abundant sequences in eukaryotic RNAs. In Caenorhabditis elegans, pUGs are added to RNA 3' ends to direct gene silencing within Mutator foci, a germ granule condensate. Here, we show that pUG RNAs efficiently self-assemble into gel condensates through quadruplex (G4) interactions. Short pUG sequences form right-handed intermolecular G4s (pUG G4s), while longer pUGs form left-handed intramolecular G4s (pUG folds). We determined a 1.05 Å crystal structure of an intermolecular pUG G4, which reveals an eight stranded G4 dimer involving 48 nucleotides, 7 different G and U quartet conformations, 7 coordinated potassium ions, 8 sodium ions and a buried water molecule. A comparison of the intermolecular pUG G4 and intramolecular pUG fold structures provides insights into the molecular basis for G4 handedness and illustrates how a simple dinucleotide repeat sequence can form complex structures with diverse topologies.

2.
Proc Natl Acad Sci U S A ; 119(48): e2206815119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417433

RESUMO

Spliceosome activation is the process of creating the catalytic site for RNA splicing and occurs de novo on each intron following spliceosome assembly. Dozens of factors bind to or are released from the activating spliceosome including the Lsm2-8 heteroheptameric ring that binds the U6 small nuclear RNA 3'-end. Lsm2-8 must be released to permit active site stabilization by the Prp19-containing complex (NineTeen Complex, NTC); however, little is known about the temporal order of events and dynamic interactions that lead up to and follow Lsm2-8 release. We have used colocalization single molecule spectroscopy (CoSMoS) to visualize Lsm2-8 dynamics during activation of Saccharomyces cerevisiae spliceosomes in vitro. Lsm2-8 is recruited as a component of the tri-snRNP and is released after integration of the Prp19-containing complex (NTC). Despite Lsm2-8 and the NTC being mutually exclusive in existing cryo-EM structures of yeast B complex spliceosomes, we identify a transient intermediate containing both ([Formula: see text]) and provide a kinetic framework for its formation and transformation during activation. Prior to [Formula: see text] assembly, the NTC rapidly and reversibly samples the spliceosome suggesting a mechanism for preventing NTC sequestration by defective spliceosomes that fail to properly activate. In complementary ensemble assays, we show that a base-pairing-dependent ternary complex can form between Lsm2-8 and U2 and U6 helix II RNAs. We propose that this interaction may play a role in formation of transient spliceosome intermediates formed during activation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Spliceossomos , Spliceossomos/genética , Imagem Individual de Molécula , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia de Fluorescência , Fatores de Processamento de RNA/metabolismo
3.
RNA ; 26(10): 1400-1413, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32518066

RESUMO

Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2',3' cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines. Lsm5 uniquely recognizes purine bases, explaining its divergent sequence relative to other Lsm subunits. Lsm1-7 loads onto RNA from the 3' end and removal of the Lsm1 carboxy-terminal region allows Lsm1-7 to scan along RNA, suggesting a gated mechanism for accessing internal binding sites. These data reveal the molecular basis for RNA binding by Lsm proteins, a fundamental step in the formation of molecular assemblies that are central to eukaryotic mRNA metabolism.


Assuntos
Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Sítios de Ligação/genética , Ligação Proteica/genética , RNA/genética , Proteínas de Ligação ao Cap de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Saccharomyces cerevisiae/genética , Spliceossomos/genética
4.
Nucleic Acids Res ; 48(3): 1423-1434, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31832688

RESUMO

U6 snRNA undergoes post-transcriptional 3' end modification prior to incorporation into the active site of spliceosomes. The responsible exoribonuclease is Usb1, which removes nucleotides from the 3' end of U6 and, in humans, leaves a 2',3' cyclic phosphate that is recognized by the Lsm2-8 complex. Saccharomycescerevisiae Usb1 has additional 2',3' cyclic phosphodiesterase (CPDase) activity, which converts the cyclic phosphate into a 3' phosphate group. Here we investigate the molecular basis for the evolution of Usb1 CPDase activity. We examine the structure and function of Usb1 from Kluyveromyces marxianus, which shares 25 and 19% sequence identity to the S. cerevisiae and Homo sapiens orthologs of Usb1, respectively. We show that K. marxianus Usb1 enzyme has CPDase activity and determined its structure, free and bound to the substrate analog uridine 5'-monophosphate. We find that the origin of CPDase activity is related to a loop structure that is conserved in yeast and forms a distinct penultimate (n - 1) nucleotide binding site. These data provide structural and mechanistic insight into the evolutionary divergence of Usb1 catalysis.


Assuntos
Evolução Molecular , Proteínas Mitocondriais/genética , Diester Fosfórico Hidrolases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Humanos , Kluyveromyces/química , Proteínas Mitocondriais/química , Modelos Moleculares , Conformação de Ácido Nucleico , Nucleotídeos/química , Nucleotídeos/genética , Fosfatos/metabolismo , Diester Fosfórico Hidrolases/química , Splicing de RNA/genética , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Spliceossomos/química , Spliceossomos/genética
5.
J Bacteriol ; 203(5)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33288623

RESUMO

Caulobacter crescentus is a Gram-negative alphaproteobacterium that commonly lives in oligotrophic fresh- and saltwater environments. C. crescentus is a host to many bacteriophages, including ϕCbK and ϕCbK-like bacteriophages, which require interaction with the bacterial flagellum and pilus complexes during adsorption. It is commonly thought that the six paralogs of the flagellin gene present in C. crescentus are important for bacteriophage evasion. Here, we show that deletion of specific flagellins in C. crescentus can indeed attenuate ϕCbK adsorption efficiency, although no single deletion completely ablates ϕCbK adsorption. Thus, the bacteriophage ϕCbK likely recognizes a common motif among the six known flagellins in C. crescentus with various degrees of efficiency. Interestingly, we observe that most deletion strains still generate flagellar filaments, with the exception of a strain that contains only the most divergent flagellin, FljJ, or a strain that contains only FljN and FljO. To visualize the surface residues that are likely recognized by ϕCbK, we determined two high-resolution structures of the FljK filament, with and without an amino acid substitution that induces straightening of the filament. We observe posttranslational modifications on conserved surface threonine residues of FljK that are likely O-linked glycans. The possibility of interplay between these modifications and ϕCbK adsorption is discussed. We also determined the structure of a filament composed of a heterogeneous mixture of FljK and FljL, the final resolution of which was limited to approximately 4.6 Å. Altogether, this work builds a platform for future investigations of how phage ϕCbK infects C. crescentus at the molecular level.IMPORTANCE Bacterial flagellar filaments serve as an initial attachment point for many bacteriophages to bacteria. Some bacteria harbor numerous flagellin genes and are therefore able to generate flagellar filaments with complex compositions, which is thought to be important for evasion from bacteriophages. This study characterizes the importance of the six flagellin genes in C. crescentus for infection by bacteriophage ϕCbK. We find that filaments containing the FljK flagellin are the preferred substrate for bacteriophage ϕCbK. We also present a high-resolution structure of a flagellar filament containing only the FljK flagellin, which provides a platform for future studies on determining how bacteriophage ϕCbK attaches to flagellar filaments at the molecular level.


Assuntos
Bacteriófagos/fisiologia , Caulobacter crescentus/ultraestrutura , Caulobacter crescentus/virologia , Flagelos/química , Flagelina/química , Ligação Viral , Sequência de Aminoácidos , Caulobacter crescentus/genética , Flagelina/genética , Genes Bacterianos , Conformação Proteica em alfa-Hélice
6.
Nucleic Acids Res ; 46(21): 11488-11501, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30215753

RESUMO

Post-transcriptional modification of snRNA is central to spliceosome function. Usb1 is an exoribonuclease that shortens the oligo-uridine tail of U6 snRNA, resulting in a terminal 2',3' cyclic phosphate group in most eukaryotes, including humans. Loss of function mutations in human Usb1 cause the rare disorder poikiloderma with neutropenia (PN), and result in U6 snRNAs with elongated 3' ends that are aberrantly adenylated. Here, we show that human Usb1 removes 3' adenosines with 20-fold greater efficiency than uridines, which explains the presence of adenylated U6 snRNAs in cells lacking Usb1. We determined three high-resolution co-crystal structures of Usb1: wild-type Usb1 bound to the substrate analog adenosine 5'-monophosphate, and an inactive mutant bound to RNAs with a 3' terminal adenosine and uridine. These structures, along with QM/MM MD simulations of the catalytic mechanism, illuminate the molecular basis for preferential deadenylation of U6 snRNA. The extent of Usb1 processing is influenced by the secondary structure of U6 snRNA.


Assuntos
Adenosina/metabolismo , Diester Fosfórico Hidrolases/metabolismo , RNA Nuclear Pequeno/metabolismo , Uridina/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Sequência de Bases , Cristalografia por Raios X , Predisposição Genética para Doença/genética , Humanos , Modelos Moleculares , Mutação , Neutropenia/genética , Neutropenia/metabolismo , Conformação de Ácido Nucleico , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Ligação Proteica , Conformação Proteica , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Anormalidades da Pele/genética , Anormalidades da Pele/metabolismo , Especificidade por Substrato
7.
Proc Natl Acad Sci U S A ; 113(51): 14727-14732, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930312

RESUMO

Intron lariats are circular, branched RNAs (bRNAs) produced during pre-mRNA splicing. Their unusual chemical and topological properties arise from branch-point nucleotides harboring vicinal 2',5'- and 3',5'-phosphodiester linkages. The 2',5'-bonds must be hydrolyzed by the RNA debranching enzyme Dbr1 before spliced introns can be degraded or processed into small nucleolar RNA and microRNA derived from intronic RNA. Here, we measure the activity of Dbr1 from Entamoeba histolytica by using a synthetic, dark-quenched bRNA substrate that fluoresces upon hydrolysis. Purified enzyme contains nearly stoichiometric equivalents of Fe and Zn per polypeptide and demonstrates turnover rates of ∼3 s-1 Similar rates are observed when apo-Dbr1 is reconstituted with Fe(II)+Zn(II) under aerobic conditions. Under anaerobic conditions, a rate of ∼4.0 s-1 is observed when apoenzyme is reconstituted with Fe(II). In contrast, apo-Dbr1 reconstituted with Mn(II) or Fe(II) under aerobic conditions is inactive. Diffraction data from crystals of purified enzyme using X-rays tuned to the Fe absorption edge show Fe partitions primarily to the ß-pocket and Zn to the α-pocket. Structures of the catalytic mutant H91A in complex with 7-mer and 16-mer synthetic bRNAs reveal bona fide RNA branchpoints in the Dbr1 active site. A bridging hydroxide is in optimal position for nucleophilic attack of the scissile phosphate. The results clarify uncertainties regarding structure/function relationships in Dbr1 enzymes, and the fluorogenic probe permits high-throughput screening for inhibitors that may hold promise as treatments for retroviral infections and neurodegenerative disease.


Assuntos
Cristalografia por Raios X/métodos , Entamoeba histolytica/enzimologia , Proteínas de Protozoários/química , RNA Nucleotidiltransferases/química , RNA/química , Catálise , Cristalização , Hidrólise , Íntrons , Ferro/química , Cinética , Espectrometria de Massas , Mutação , Peptídeos/química , Precursores de RNA/química , Splicing de RNA , RNA Circular , Raios X , Zinco/química
8.
Nucleic Acids Res ; 44(3): 1398-410, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26673715

RESUMO

Base-pairing of U4 and U6 snRNAs during di-snRNP assembly requires large-scale remodeling of RNA structure that is chaperoned by the U6 snRNP protein Prp24. We investigated the mechanism of U4/U6 annealing in vitro using an assay that enables visualization of ribonucleoprotein complexes and faithfully recapitulates known in vivo determinants for the process. We find that annealing, but not U6 RNA binding, is highly dependent on the electropositive character of a 20 Å-wide groove on the surface of Prp24. During annealing, we observe the formation of a stable ternary complex between U4 and U6 RNAs and Prp24, indicating that displacement of Prp24 in vivo requires additional factors. Mutations that stabilize the U6 'telestem' helix increase annealing rates by up to 15-fold, suggesting that telestem formation is rate-limiting for U4/U6 pairing. The Lsm2-8 complex, which binds adjacent to the telestem at the 3' end of U6, provides a comparable rate enhancement. Collectively, these data identify domains of the U6 snRNP that are critical for one of the first steps in assembly of the megaDalton U4/U6.U5 tri-snRNP complex, and lead to a dynamic model for U4/U6 pairing that involves a striking degree of evolved cooperativity between protein and RNA.


Assuntos
RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Ligação Competitiva , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Nucleic Acids Res ; 42(16): 10845-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25123664

RESUMO

The enzymatic processing of cellular RNA molecules requires selective recognition of unique chemical and topological features. The unusual 2',5'-phosphodiester linkages in RNA lariats produced by the spliceosome must be hydrolyzed by the intron debranching enzyme (Dbr1) before they can be metabolized or processed into essential cellular factors, such as snoRNA and miRNA. Dbr1 is also involved in the propagation of retrotransposons and retroviruses, although the precise role played by the enzyme in these processes is poorly understood. Here, we report the first structures of Dbr1 alone and in complex with several synthetic RNA compounds that mimic the branchpoint in lariat RNA. The structures, together with functional data on Dbr1 variants, reveal the molecular basis for 2',5'-phosphodiester recognition and explain why the enzyme lacks activity toward 3',5'-phosphodiester linkages. The findings illuminate structure/function relationships in a unique enzyme that is central to eukaryotic RNA metabolism and set the stage for the rational design of inhibitors that may represent novel therapeutic agents to treat retroviral infections and neurodegenerative disease.


Assuntos
Íntrons , RNA Nucleotidiltransferases/química , Entamoeba histolytica/enzimologia , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA/química , RNA/metabolismo , RNA Nucleotidiltransferases/metabolismo
11.
J Org Chem ; 80(20): 10108-18, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26378468

RESUMO

Two RNA fragments linked by means of a 2',5' phosphodiester bridge (2' hydroxyl of one fragment connected to the 5' hydroxyl of the other) constitute a class of nucleic acids known as 2'-5' branched RNAs (bRNAs). In this report we show that bRNA analogues containing 2'-5' phosphoramidate linkages (bN-RNAs) inhibit the lariat debranching enzyme, a 2',5'-phosphodiesterase that has recently been implicated in neurodegenerative diseases associated with aging. bN-RNAs were efficiently generated using automated solid-phase synthesis and suitably protected branchpoint building blocks. Two orthogonally removable groups, namely the 4-monomethoxytrityl (MMTr) group and the fluorenylmethyl-oxycarbonyl (Fmoc) groups, were evaluated as protecting groups of the 2' amino functionality. The 2'-N-Fmoc methodology was found to successfully produce bN-RNAs on solid-phase oligonucleotide synthesis. The synthesized bN-RNAs resisted hydrolysis by the lariat debranching enzyme (Dbr1) and, in addition, were shown to attenuate the Dbr1-mediated hydrolysis of native bRNA.


Assuntos
Amidas/química , Ácidos Fosfóricos/química , RNA Nucleotidiltransferases/química , RNA/química , RNA/síntese química , Humanos , Conformação de Ácido Nucleico , RNA/metabolismo , RNA Nucleotidiltransferases/antagonistas & inibidores , Splicing de RNA , Técnicas de Síntese em Fase Sólida
12.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503001

RESUMO

Flagella are dynamic, ion-powered machines with assembly pathways that are optimized for efficient flagella production. In bacteria, dozens of genes are coordinated at specific times in the cell lifecycle to generate each component of the flagellum. This is the case for Caulobacter crescentus, but little is known about why this species encodes six different flagellin genes. Furthermore, little is known about the benefits multi-flagellin species possess over single flagellin species, if any, or what molecular properties allow for multi-flagellin filaments to assemble. Here we present an in-depth analysis of several single flagellin filaments from C. crescentus, including an extremely well-resolved structure of a bacterial flagellar filament. We highlight key molecular interactions that differ between each bacterial strain and speculate how these interactions may alleviate or impose helical strain on the overall architecture of the filament. We detail conserved residues within the flagellin subunit that allow for the synthesis of multi-flagellin filaments. We further comment on how these molecular differences impact bacterial motility and highlight how no single flagellin filament achieves wild-type levels of motility, suggesting C. crescentus has evolved to produce a filament optimized for motility comprised of six flagellins. Finally, we highlight an ordered arrangement of glycosylation sites on the surface of the filaments and speculate how these sites may protect the ß-hairpin located on the surface exposed domain of the flagellin subunit.

13.
Nat Struct Mol Biol ; 29(11): 1113-1121, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352138

RESUMO

The addition of poly(UG) ('pUG') repeats to 3' termini of mRNAs drives gene silencing and transgenerational epigenetic inheritance in the metazoan Caenorhabditis elegans. pUG tails promote silencing by recruiting an RNA-dependent RNA polymerase (RdRP) that synthesizes small interfering RNAs. Here we show that active pUG tails require a minimum of 11.5 repeats and adopt a quadruplex (G4) structure we term the pUG fold. The pUG fold differs from known G4s in that it has a left-handed backbone similar to Z-RNA, no consecutive guanosines in its sequence, and three G quartets and one U quartet stacked non-sequentially. The compact pUG fold binds six potassium ions and brings the RNA ends into close proximity. The biological importance of the pUG fold is emphasized by our observations that porphyrin molecules bind to the pUG fold and inhibit both gene silencing and binding of RdRP. Moreover, specific 7-deaza substitutions that disrupt the pUG fold neither bind RdRP nor induce RNA silencing. These data define the pUG fold as a previously unrecognized RNA structural motif that drives gene silencing. The pUG fold can also form internally within larger RNA molecules. Approximately 20,000 pUG-fold sequences are found in noncoding regions of human RNAs, suggesting that the fold probably has biological roles beyond gene silencing.


Assuntos
Proteínas de Caenorhabditis elegans , Inativação Gênica , Humanos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA
14.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 10): 652-656, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31584014

RESUMO

The structure of a 22-base-pair RNA helix with mismatched pyrimidine base pairs is reported. The helix contains two symmetry-related CUG sequences: a triplet-repeat motif implicated in myotonic dystrophy type 1. The CUG repeat contains a U-U mismatch sandwiched between Watson-Crick pairs. Additionally, the center of the helix contains a dimerized UUCG motif with tandem pyrimidine (U-C/C-U) mismatches flanked by U-G wobble pairs. This region of the structure is significantly different from previously observed structures that share the same sequence and neighboring base pairs. The tandem pyrimidine mismatches are unusual and display sheared, cross-strand stacking geometries that locally constrict the helical width, a type of stacking previously associated with purines in internal loops. Thus, pyrimidine-rich regions of RNA have a high degree of structural diversity.


Assuntos
Pareamento Incorreto de Bases , Pirimidinas/química , RNA/química , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Sequências Repetitivas de Ácido Nucleico
15.
Biochemistry ; 47(35): 9145-53, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18690703

RESUMO

The enzyme spermidine/spermine N (1)-acetyltransferase (SSAT) catalyzes the transfer of acetyl groups from acetylcoenzyme A to spermidine and spermine, as part of a polyamine degradation pathway. This work describes the crystal structure of SSAT in complex with coenzyme A, with and without bound spermine. The complex with spermine provides a direct view of substrate binding by an SSAT and demonstrates structural plasticity near the active site of the enzyme. Associated water molecules bridge several of the intermolecular contacts between spermine and the enzyme and form a "proton wire" between the side chain of Glu92 and the N1 amine of spermine. A single water molecule can also be seen forming hydrogen bonds with the side chains of Glu92, Asp93, and the N4 amine of spermine. Site-directed mutation of Glu92 to glutamine had a detrimental effect on both substrate binding and catalysis and shifted the optimal pH for enzyme activity further into alkaline solution conditions, while mutation of Asp93 to asparagine affected both substrate binding and catalysis without changing the pH dependence of the enzyme. Considered together, the structural and kinetic data suggest that Glu92 functions as a catalytic base to drive an otherwise unfavorable deprotonation step at physiological pH.


Assuntos
Acetiltransferases/química , Espermina/química , Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Catálise , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Alinhamento de Sequência , Espermidina/química , Espermidina/metabolismo , Espermina/metabolismo , Relação Estrutura-Atividade
16.
Nat Commun ; 9(1): 1749, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717126

RESUMO

The spliceosome removes introns from precursor messenger RNA (pre-mRNA) to produce mature mRNA. Prior to catalysis, spliceosomes are assembled de novo onto pre-mRNA substrates. During this assembly process, U6 small nuclear RNA (snRNA) undergoes extensive structural remodeling. The early stages of this remodeling process are chaperoned by U6 snRNP proteins Prp24 and the Lsm2-8 heteroheptameric ring. We now report a structure of the U6 snRNP from Saccharomyces cerevisiae. The structure reveals protein-protein contacts that position Lsm2-8 in close proximity to the chaperone "active site" of Prp24. The structure also shows how the Lsm2-8 ring specifically recognizes U6 snRNA that has been post-transcriptionally modified at its 3' end, thereby elucidating the mechanism by which U6 snRNPs selectively recruit 3' end-processed U6 snRNA into spliceosomes. Additionally, the structure reveals unanticipated homology between the C-terminal regions of Lsm8 and the cytoplasmic Lsm1 protein involved in mRNA decay.


Assuntos
RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Conformação Proteica , Processamento de Terminações 3' de RNA , Processamento Pós-Transcricional do RNA , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos
17.
Acta Crystallogr D Struct Biol ; 73(Pt 1): 1-8, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28045380

RESUMO

U6 small nuclear RNA (snRNA) is a key component of the active site of the spliceosome, a large ribonucleoprotein complex that catalyzes the splicing of precursor messenger RNA. Prior to its incorporation into the spliceosome, U6 is bound by the protein Prp24, which facilitates unwinding of the U6 internal stem-loop (ISL) so that it can pair with U4 snRNA. A previously reported crystal structure of the `core' of the U6 small nuclear ribonucleoprotein (snRNP) contained an ISL-stabilized A62G mutant of U6 bound to all four RNA-recognition motif (RRM) domains of Prp24 [Montemayor et al. (2014), Nature Struct. Mol. Biol. 21, 544-551]. The structure revealed a novel topology containing interlocked rings of protein and RNA that was not predicted by prior biochemical and genetic data. Here, the crystal structure of the U6 snRNP core with a wild-type ISL is reported. This complex crystallized in a new space group, apparently owing in part to the presence of an intramolecular cross-link in RRM1 that was not observed in the previously reported U6-A62G structure. The structure exhibits the same protein-RNA interface and maintains the unique interlocked topology. However, the orientation of the wild-type ISL is altered relative to the A62G mutant structure, suggesting inherent structural dynamics that may facilitate its pairing with U4. Consistent with their similar architectures in the crystalline state, the wild-type and A62G variants of U6 exhibit similar Prp24-binding affinities and electrophoretic mobilities when analyzed by gel-shift assay.

18.
ACS Chem Biol ; 12(3): 622-627, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28055181

RESUMO

We have developed fluorescent 2',5' branched RNAs (bRNA) that permit real time monitoring of RNA lariat (intron) debranching enzyme (Dbr1) kinetics. These compounds contain fluorescein (FAM) on the 5' arm of the bRNA that is quenched by a dabcyl moiety on the 2' arm. Dbr1-mediated hydrolysis of the 2',5' linkage induces a large increase in fluorescence, providing a convenient assay for Dbr1 hydrolysis. We show that unlabeled bRNAs with non-native 2',5'-phosphodiester linkages, such as phosphoramidate or phosphorothioate, can inhibit Dbr1-mediated debranching with IC50 values in the low nanomolar range. In addition to measuring kinetic parameters of the debranching enzyme, these probes can be used for high throughput screening (HTS) of chemical libraries with the aim of identifying Dbr1 inhibitors, compounds that may be useful in treating neurodegenerative diseases and retroviral infections.


Assuntos
Corantes Fluorescentes/química , Ensaios de Triagem em Larga Escala , RNA Nucleotidiltransferases/metabolismo , RNA/química , Cinética , RNA Nucleotidiltransferases/antagonistas & inibidores
19.
Nat Commun ; 8(1): 497, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887445

RESUMO

U6 small nuclear ribonucleoprotein (snRNP) biogenesis is essential for spliceosome assembly, but not well understood. Here, we report structures of the U6 RNA processing enzyme Usb1 from yeast and a substrate analog bound complex from humans. Unlike the human ortholog, we show that yeast Usb1 has cyclic phosphodiesterase activity that leaves a terminal 3' phosphate which prevents overprocessing. Usb1 processing of U6 RNA dramatically alters its affinity for cognate RNA-binding proteins. We reconstitute the post-transcriptional assembly of yeast U6 snRNP in vitro, which occurs through a complex series of handoffs involving 10 proteins (Lhp1, Prp24, Usb1 and Lsm2-8) and anti-cooperative interactions between Prp24 and Lhp1. We propose a model for U6 snRNP assembly that explains how evolutionarily divergent and seemingly antagonistic proteins cooperate to protect and chaperone the nascent snRNA during its journey to the spliceosome.The mechanism of U6 small nuclear ribonucleoprotein (snRNP) biogenesis is not well understood. Here the authors characterize the enzymatic activities and structures of yeast and human U6 RNA processing enzyme Usb1, reconstitute post-transcriptional assembly of yeast U6 snRNP in vitro, and propose a model for U6 snRNP assembly.


Assuntos
Diester Fosfórico Hidrolases/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Variação Genética , Humanos , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Ligação Proteica , Domínios Proteicos , RNA Nuclear Pequeno/genética , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
20.
J Mol Biol ; 428(5 Pt A): 777-789, 2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-26655855

RESUMO

NMR and SAXS (small-angle X-ray scattering)/WAXS (wide-angle X-ray scattering) are highly complementary approaches for the analysis of RNA structure in solution. Here we describe an efficient NMR-SAXS/WAXS approach for structural investigation of multi-helical RNAs. We illustrate this approach by determining the overall fold of a 92-nt 3-helix junction from the U4/U6 di-snRNA. The U4/U6 di-snRNA is conserved in eukaryotes and is part of the U4/U6.U5 tri-snRNP, a large ribonucleoprotein complex that comprises a major subunit of the assembled spliceosome. Helical orientations can be determined by X-ray scattering data alone, but the addition of NMR RDC (residual dipolar coupling) restraints improves the structure models. RDCs were measured in two different external alignment media and also by magnetic susceptibility anisotropy. The resulting alignment tensors are collinear, which is a previously noted problem for nucleic acids. Including WAXS data in the calculations produces models with significantly better fits to the scattering data. In solution, the U4/U6 di-snRNA forms a 3-helix junction with a planar Y-shaped structure and has no detectable tertiary interactions. Single-molecule Förster resonance energy transfer data support the observed topology. A comparison with the recently determined cryo-electron microscopy structure of the U4/U6.U5 tri-snRNP illustrates how proteins scaffold the RNA and dramatically alter the geometry of the U4/U6 3-helix junction.


Assuntos
Modelos Moleculares , Conformação de Ácido Nucleico , RNA Fúngico/genética , Ribonucleoproteína Nuclear Pequena U4-U6/química , Sequência de Bases , Imageamento por Ressonância Magnética , Dados de Sequência Molecular , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Saccharomyces cerevisiae/genética , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Spliceossomos/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA