Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 165(1): 133-148.e17, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36907523

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDA), with its highly metastatic propensity, is one of the most lethal subtypes of pancreatic cancer. Although recent large-scale transcriptomic studies have demonstrated that heterogeneous gene expressions play an essential role in determining molecular phenotypes of PDA, biological cues for and consequences of distinct transcriptional programs remain unclear. METHODS: We developed an experimental model that enforces the transition of PDA cells toward a basal-like subtype. We combined epigenome and transcriptome analyses with extensive in vitro and in vivo evaluations of tumorigenicity to demonstrate the validity of basal-like subtype differentiation in association with endothelial-like enhancer landscapes via TEA domain transcription factor 2 (TEAD2). Finally, we used loss-of-function experiments to investigate the importance of TEAD2 in regulating reprogrammed enhancer landscape and metastasis in basal-like PDA cells. RESULTS: Aggressive characteristics of the basal-like subtype are faithfully recapitulated in vitro and in vivo, demonstrating the physiological relevance of our model. Further, we showed that basal-like subtype PDA cells acquire a TEAD2-dependent proangiogenic enhancer landscape. Genetic and pharmacologic inhibitions of TEAD2 in basal-like subtype PDA cells impair their proangiogenic phenotypes in vitro and cancer progression in vivo. Last, we identify CD109 as a critical TEAD2 downstream mediator that maintains constitutively activated JAK-STAT signaling in basal-like PDA cells and tumors. CONCLUSIONS: Our findings implicate a TEAD2-CD109-JAK/STAT axis in the basal-like differentiated pancreatic cancer cells and as a potential therapeutic vulnerability.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Pâncreas/patologia , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição de Domínio TEA , Neoplasias Pancreáticas
2.
Cancer Lett ; 588: 216781, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38494150

RESUMO

Metastatic lung adenocarcinoma (LuAC) presents a significant clinical challenge due to the short latency and the lack of efficient treatment options. Therefore, identification of molecular vulnerabilities in metastatic LuAC holds great importance in the development of therapeutic drugs against this disease. In this study, we performed a genome-wide siRNA screening using poorly and highly brain-metastatic LuAC cell lines. Using this approach, we discovered that compared to poorly metastatic LuAC (LuAC-Par) cells, brain-metastatic LuAC (LuAC-BrM) cells exhibited a significantly higher vulnerability to c-FLIP (an inhibitor of caspase-8)-depletion-induced apoptosis. Furthermore, in vivo studies demonstrated that c-FLIP knockdown specifically inhibited growth of LuAC-BrM, but not the LuAC-Par, tumors, suggesting the addiction of LuAC-BrM to the function of c-FLIP for their survival. Our in vitro and in vivo analyses also demonstrated that LuAC-BrM is more sensitive to c-FLIP-depletion due to ER stress-induced activation of the c-JUN and subsequent induction of stress genes including ATF4 and DDIT3. Finally, we found that c-JUN not only sensitized LuAC-BrM to c-FLIP-depletion-induced cell death but also promoted brain metastasis in vivo, providing strong evidence for c-JUN's function as a double-edged sword in LuAC-BrM. Collectively, our findings not only reveal a novel link between c-JUN, brain metastasis, and c-FLIP addiction in LuAC-BrM but also present an opportunity for potential therapeutic intervention.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Pulmonares/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD
3.
Cancer Res ; 79(22): 5849-5859, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31506334

RESUMO

Genetic and epigenetic changes (e.g., histone methylation) contribute to cancer development and progression, but our understanding of whether and how specific mutations affect a cancer's sensitivity to histone demethylase (KDM) inhibitors is limited. Here, we evaluated the effects of a panel of KDM inhibitors on lung adenocarcinomas (LuAC) with various mutations. Notably, LuAC lines harboring KRAS mutations showed hypersensitivity to the histone H3K27 demethylase inhibitor GSK-J4. Specifically, GSK-J4 treatment of KRAS mutant-containing LuAC downregulated cell-cycle progression genes with increased H3K27me3. In addition, GSK-J4 upregulated expression of genes involved in glutamine/glutamate transport and metabolism. In line with this, GSK-J4 reduced cellular levels of glutamate, a key source of the TCA cycle intermediate α-ketoglutarate (αKG) and of the antioxidant glutathione, leading to reduced cell viability. Supplementation with an αKG analogue or glutathione protected KRAS-mutant LuAC cells from GSK-J4-mediated reductions in viability, suggesting GSK-J4 exerts its anticancer effects by inducing metabolic and oxidative stress. Importantly, KRAS knockdown in mutant LuAC lines prevented GSK-J4-induced decrease in glutamate levels and reduced their susceptibility to GSK-J4, whereas overexpression of oncogenic KRAS in wild-type LuAC lines sensitized them to GSK-J4. Collectively, our study uncovers a novel association between a genetic mutation and KDM inhibitor sensitivity and identifies the underlying mechanisms. This suggests GSK-J4 as a potential treatment option for cancer patients with KRAS mutations. SIGNIFICANCE: This study not only provides a novel association between KRAS mutation and GSK-J4 sensitivity but also demonstrates the underlying mechanisms, suggesting a potential use of GSK-J4 in cancer patients with KRAS mutations.


Assuntos
Ativação Metabólica/genética , Adenocarcinoma de Pulmão/genética , Benzazepinas/farmacologia , Neoplasias Pulmonares/genética , Oncogenes/genética , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/farmacologia , Células A549 , Ativação Metabólica/efeitos dos fármacos , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Histonas/genética , Humanos , Neoplasias Pulmonares/patologia , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estresse Oxidativo/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA