Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Magn Reson Imaging ; 57(3): 727-737, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35808987

RESUMO

BACKGROUND: Pulmonary hypertension (PH) contributes to restricted flow through the pulmonary circulation characterized by elevated mean pulmonary artery pressure acquired from invasive right heart catheterization (RHC). MRI may provide a noninvasive alternative for diagnosis and characterization of PH. PURPOSE: To characterize PH via quantification of regional pulmonary transit times (rPTT). STUDY TYPE: Retrospective. POPULATION: A total of 43 patients (58% female); 24 controls (33% female). RHC-confirmed patients classified as World Health Organization (WHO) subgroups 1-4. FIELD STRENGTH/SEQUENCE: A 1.5 T/time-resolved contrast-enhanced MR Angiography (CE-MRA). ASSESSMENT: CE-MRA data volumes were combined into a 4D matrix (3D resolution + time). Contrast agent arrival time was defined as the peak in the signal-intensity curve generated for each voxel. Average arrival times within a vessel region of interest (ROI) were normalized to the main pulmonary artery ROI (t0 ) for eight regions to define rPTT for all subjects. Subgroup analysis included grouping the four arterial and four venous regions. Intraclass correlation analysis completed for reproducibility. STATISTICAL TESTS: Analysis of covariance with age as covariate. A priori Student's t-tests or Wilcoxon rank-sum test; α = 0.05. Results compared to controls unless noted. Significant without listing P value. ICC ran as two-way absolute agreement model with two observers. RESULTS: PH patients demonstrated elevated rPTT in all vascular regions; average rPTT increase in arterial and venous branches was 0.85 ± 0.15 seconds (47.7%) and 1.0 ± 0.18 seconds (16.9%), respectively. Arterial rPTT was increased for all WHO subgroups; venous regions were elevated for subgroups 2 and 4 (group 1, P = 0.86; group 3, P = 0.32). No significant rPTT differences were found between subgroups (P = 0.094-0.94). Individual vessel ICC values ranged from 0.58 to 0.97. DATA CONCLUSION: Noninvasive assessment of PH using standard-of-care time-resolved CE-MRA can detect increased rPTT in PH patients of varying phenotypes compared to controls. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.


Assuntos
Hipertensão Pulmonar , Feminino , Masculino , Humanos , Hipertensão Pulmonar/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Estudos Retrospectivos , Reprodutibilidade dos Testes , Artéria Pulmonar/diagnóstico por imagem , Meios de Contraste
2.
J Magn Reson Imaging ; 56(2): 440-449, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34953154

RESUMO

BACKGROUND: Gadobutrol (GB) and gadoterate meglumine (GM) are contrast agents used for contrast-enhanced magnetic resonance angiography (CEMRA). Supraaortic vasculature (SAV) CEMRAs are used to evaluate stroke risk and neurologic symptoms. There is a need to compare the SAV CEMRA image quality obtained with GB and GM. PURPOSE: To intra-individually compare MRA images obtained with equimolar GB and GM at 1.5 T in the SAV. STUDY TYPE: Prospective, crossover. POPULATION: Twenty-eight subjects (54 ± 13 years; 17 female). FIELD STRENGTH/SEQUENCE: 1.5 T; three-dimensional (3D) gradient recalled echo. ASSESSMENT: Quantitative image quality was measured by normalized signal intensity (SIn ) [SIn  = SI blood/SD blood] and contrast ratio (CR) [CR = SI blood/SI muscle], determined by an observer (JWC) with 1 year of vascular imaging experience. Three radiologists (AS, PA, and MU) with (5, 5, and 6 years of) vascular imaging experience evaluated image quality by Likert-scale ratings (of image impression, wall conspicuity, and artifact absence). STATISTICAL TESTS: SIn and CR were compared with paired t-tests or Wilcoxon signed-rank tests and Bland-Altman plots. Qualitative ratings were compared with Wilcoxon signed-rank test. RESULTS: No significant difference in SIn was found between GB and GM. CRs with GB were significantly higher than GM at the right common carotid (6.9 ± 2.5 vs. 4.8 ± 1), left internal carotid (7.3 ± 2 vs. 4.4 ± 1.2), right internal carotid (7.7 ± 2.2 vs. 5 ± 1.1), and left vertebral (6.6 ± 2.2 vs. 4.5 ± 1.1) arteries. Bland-Altman plots showed relatively greater differences between GB and GM at higher CRs and SIn s. GM showed significantly higher artifact than GB (3.56 ± 0.52 vs. 3.36 ± 0.46) and significantly lower overall image quality (10.73 ± 1.45 vs. 11.26 ± 1.58) at the left vertebral artery. DATA CONCLUSION: At 1.5 T and equimolar demonstration, GB (0.1 mL/kg, i.e., 0.1 mmol/kg) showed higher CRs in the SAV compared to GM (0.2 mL/kg, i.e., 0.1 mmol/kg) at most vessels. Subjective image quality was not significantly different between the two agents for most vessels. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Angiografia por Ressonância Magnética , Compostos Organometálicos , Meios de Contraste , Feminino , Humanos , Angiografia por Ressonância Magnética/métodos , Meglumina , Estudos Prospectivos , Reprodutibilidade dos Testes
3.
Phys Chem Chem Phys ; 24(2): 797-806, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927644

RESUMO

The spontaneous adsorption of graphene oxide (GO) sheets at the air-water interface is explored using X-ray reflectivity (XRR) measurements. As a pure aqueous dispersion, GO sheets do not spontaneously adsorb at the air-water interface due to their high negative surface potential (-60 mV) and hydrophilic functionality. However, when incorporated with surfactant molecules at optimal ratios and loadings, GO sheets can spontaneously be driven to the surface. It is hypothesised that surfactant molecules experience favourable attractive interactions with the surfaces of GO sheets, resulting in co-assembly that serves to render the sheets surface active. The GO/surfactant composites then collectively adsorb at the air-water interface, with XRR analysis suggesting an interfacial structure comprising surfactant tailgroups in air and GO/surfactant headgroups in water for a combined thickness of 30-40 Å, depending on the surfactant used. Addition of too much surfactant appears to inhibit GO surface adsorption by saturating the interface, and low loadings of GO/surfactant composites (even at optimal ratios) do not show significant adsorption indicating a partitioning effect. Lastly, surfactant chemistry is also a key factor dictating adsorption capacity of GO. The zwitterionic surfactant oleyl amidopropyl betaine causes marked increases in GO surface activity even at very low concentrations (≤0.2 mM), whereas non-ionic surfactants such as Triton X-100 and hexaethyleneglycol monododecyl ether require higher concentrations (ca. 1 mM) in order to impart spontaneous adsorption of the sheets. Anionic surfactants do not enhance GO surface activity presumably due to like-charge repulsions that prevent co-assembly. This work provides useful insight into the synergy between GO sheets and molecular amphiphiles in aqueous systems for enhancing the surface activity of GO, and can be used to inform system formulation for developing water-friendly, surface active composites based around atomically thin materials.

4.
Langmuir ; 34(3): 970-977, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29016147

RESUMO

Long-chain amidopropyl betaines are known for their ability to self-assemble into viscoelastic wormlike micellar structures. Here, we explore the effect of tailgroup molecular architecture on this process, comparing five molecules, each with C18 chains but different levels of unsaturation and branching. The surfactants are synthesized from stearic, oleic, linoleic, linolenic, and isostearic acids. The self-assembly of these molecules in aqueous solutions is explored using small- and ultra-small-angle neutron scattering (SANS and USANS). It is seen that optimum wormlike micelle formation is achieved for the oleic-chained surfactant, and the alignment of self-assembled structures is further explored using rheo-SANS. The more highly unsaturated molecules form rodlike micelles, whereas the stearic-tailed molecule shows a pronounced Krafft point and the isostearic-chained surfactant is entirely water-insoluble. These results demonstrate the critical importance of tailgroup geometry on surfactant properties and self-assembly for this industrially important class of surfactants.


Assuntos
Betaína/química , Micelas , Tensoativos/química , Estrutura Molecular , Espalhamento a Baixo Ângulo , Água/química
5.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746187

RESUMO

Cerebrovascular imaging assessments are particularly challenging in adolescent cohorts, where not all modalities are appropriate, and rapid brain maturation alters hemodynamics at both macro- and microvascular scales. In a preliminary sample of healthy adolescents (n=12, 8-25 years), we investigated relationships between 4D flow MRI-derived blood velocity and blood flow in bilateral anterior, middle, and posterior cerebral arteries and BOLD cerebrovascular reactivity in associated vascular territories. As hypothesized, higher velocities in large arteries are associated with an earlier response to a vasodilatory stimulus (cerebrovascular reactivity delay) in the downstream territory. Higher blood flow through these arteries is associated with a larger BOLD response to a vasodilatory stimulus (cerebrovascular reactivity amplitude) in the associated territory. These trends are consistent in a case study of adult moyamoya disease. In our small adolescent cohort, macrovascular-microvascular relationships for velocity/delay and flow/CVR change with age, though underlying mechanisms are unclear. Our work emphasizes the need to better characterize this key stage of human brain development, when cerebrovascular hemodynamics are changing, and standard imaging methods offer limited insight into these processes. We provide important normative data for future comparisons in pathology, where combining macro- and microvascular assessments may better help us prevent, stratify, and treat cerebrovascular disease.

6.
Front Radiol ; 4: 1385424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895589

RESUMO

Introduction: Intracranial 4D flow MRI enables quantitative assessment of hemodynamics in patients with intracranial atherosclerotic disease (ICAD). However, quantitative assessments are still challenging due to the time-consuming vessel segmentation, especially in the presence of stenoses, which can often result in user variability. To improve the reproducibility and robustness as well as to accelerate data analysis, we developed an accurate, fully automated segmentation for stenosed intracranial vessels using deep learning. Methods: 154 dual-VENC 4D flow MRI scans (68 ICAD patients with stenosis, 86 healthy controls) were retrospectively selected. Manual segmentations were used as ground truth for training. For automated segmentation, deep learning was performed using a 3D U-Net. 20 randomly selected cases (10 controls, 10 patients) were separated and solely used for testing. Cross-sectional areas and flow parameters were determined in the Circle of Willis (CoW) and the sinuses. Furthermore, the flow conservation error was calculated. For statistical comparisons, Dice scores (DS), Hausdorff distance (HD), average symmetrical surface distance (ASSD), Bland-Altman analyses, and interclass correlations were computed using the manual segmentations from two independent observers as reference. Finally, three stenosis cases were analyzed in more detail by comparing the 4D flow-based segmentations with segmentations from black blood vessel wall imaging (VWI). Results: Training of the network took approximately 10 h and the average automated segmentation time was 2.2 ± 1.0 s. No significant differences in segmentation performance relative to two independent observers were observed. For the controls, mean DS was 0.85 ± 0.03 for the CoW and 0.86 ± 0.06 for the sinuses. Mean HD was 7.2 ± 1.5 mm (CoW) and 6.6 ± 3.7 mm (sinuses). Mean ASSD was 0.15 ± 0.04 mm (CoW) and 0.22 ± 0.17 mm (sinuses). For the patients, the mean DS was 0.85 ± 0.04 (CoW) and 0.82 ± 0.07 (sinuses), the HD was 8.4 ± 3.1 mm (CoW) and 5.7 ± 1.9 mm (sinuses) and the mean ASSD was 0.22 ± 0.10 mm (CoW) and 0.22 ± 0.11 mm (sinuses). Small bias and limits of agreement were observed in both cohorts for the flow parameters. The assessment of the cross-sectional lumen areas in stenosed vessels revealed very good agreement (ICC: 0.93) with the VWI segmentation but a consistent overestimation (bias ± LOA: 28.1 ± 13.9%). Discussion: Deep learning was successfully applied for fully automated segmentation of stenosed intracranial vasculatures using 4D flow MRI data. The statistical analysis of segmentation and flow metrics demonstrated very good agreement between the CNN and manual segmentation and good performance in stenosed vessels. To further improve the performance and generalization, more ICAD segmentations as well as other intracranial vascular pathologies will be considered in the future.

7.
Eur J Hybrid Imaging ; 6(1): 16, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35965266

RESUMO

BACKGROUND: Large vessel vasculitis (LVV) can be characterized based on symptom severity, and this characterization helps clinicians decide upon treatment approach. Our aim was to compare the imaging findings of combined modality positron emission tomography/magnetic resonance (PET/MR) and inflammatory markers between severe and non-severe LVV. A retrospective query was performed to identify all patients with LVV who underwent PET/MR at our institution between January 2015 and January 2021. RESULTS: Eleven patients (nine females; age 62.2 ± 16.4 years) underwent 15 PET/MR scans. Positivity was defined by findings indicative of active LVV on each modality: PET positive if vessel metabolic activity > liver metabolic activity; MR positive if wall thickening or contrast enhancement. When positive PET or positive MR findings were considered a positive scan, LVV patients with severe disease (n = 9 scans) showed a higher number of positive scans (n = 9) compared to the number of positive scans in non-severe patients (n = 3) (p < 0.05). The sensitivity and specificity for the detection of severe LVV were 1.00 and 0.50, respectively. When only the presence of both positive PET and positive MR findings were considered a positive scan, inflammatory marker levels were not significantly different between severe and non-severe LVV groups (severe: erythrocyte sedimentation rate (ESR) = 9.8 ± 10.6 mm/h; C-reactive protein (CRP) = 0.6 ± 0.4 mg/dL) (non-severe: ESR = 14.3 ± 22.4 mm/h; CRP = 0.5 ± 0.6 mg/dL). Blood- and liver-normalized maximum standardized uptake values were not significantly different between severe and non-severe patients (1.4 ± 0.3 vs 1.5 ± 0.4; 1.1 ± 0.4 vs 1.0 ± 0.3, respectively). CONCLUSIONS: Because of the differences observed, PET/MR appears to be better suited to facilitate the characterization of LVV as severe or non-severe compared to inflammatory marker measurements and quantitative measurements of metabolic activity. Qualitative assessment of PET and MR positivity by 18F-fluorodeoxyglucose PET/MR may be able to supplement clinical symptoms-based LVV classification decisions and may be helpful when clinical symptoms overlap with other disease processes.

8.
J Colloid Interface Sci ; 547: 275-290, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959261

RESUMO

Carbohydrates are appealing non-ionic surfactant head-groups as they are naturally abundant, generally biocompatible and biodegradable, and readily functionalized. Recent work has produced a promising molecular candidate for the formation of viscoelastic worm-like micellar solutions: a tri(ethylene glycol)-linked oleyl-ß-D-glucoside surfactant (GlcC18:1) exhibited near ideal Maxwell behavior at low concentrations (2.9 wt%) without additives at room temperature. Here, fourteen surfactants have been synthesized with structural variations based around GlcC18:1. Each contain an oligo(ethylene glycol) linker of varying length (2, 3, 4, 6 EO units) between a carbohydrate head-group (glucose, galactose, mannose, maltose, lactose, cellobiose) and a cis-unsaturated alkyl tail-group (oleyl, linoleyl, erucyl). The aqueous adsorption kinetics and self-assembly of these surfactants was explored using tensiometry and small-angle neutron scattering (SANS), respectively. With SANS we observed the formation of worm-like micelles for four surfactants, and vesicles for two surfactants which exhibited behavior similar to insoluble lipids. We also observed temperature-induced micellar elongation due to dehydration of the oligo(ethylene glycol) linker, resulting in a further three surfactants forming worm-like micelles at 50 °C. Worm-like micellar fluids were further characterized using rheology to reveal two surfactants with vastly superior viscoelastic properties compared to GlcC18:1, with >2 orders of magnitude increase in viscosity and >3 orders of magnitude increase in stress relaxation time. These results provide insight into structure-function relationships for non-ionic surfactants and demonstrate a class of designed amphiphiles with a special propensity for forming viscoelastic worm-like micellar solutions at low concentrations.

9.
J Colloid Interface Sci ; 534: 518-532, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30253353

RESUMO

A model zwitterionic surfactant, oleyl amidopropyl betaine (OAPB), that spontaneously forms viscoelastic wormlike micelles in aqueous solution is mixed with a variety of structurally diverse organic additives. By systematically varying the nature of these additives, insight into the effects of their aromaticity and polarity on the bulk assembly and fluid behaviour of these micelles is gained by the complementary use of small-angle neutron scattering and viscosity measurements. Inclusion of non-polar additives causes the wormlike aggregates to transition into microemulsions above a critical additive concentration; the precise partitioning within the micelle is determined using contrast variation. Alternatively, polar additives do not appear to cause evolution from the wormlike structure, but instead influence the fluid rheology, with some serving to significantly increase viscosity above that of the pure surfactant solution. Addition of these molecules is accompanied by an increase in fluid viscosity when the oxygenated group of the additive is resonance stabilised or acidic. This effect is thought to be a result of surfactant-additive synergism, in which charge screening of the surfactant head-groups causes stronger attractions between molecules, increasing the scission energy of the micelles (i.e. reducing their ability to break apart and reform). Further doping of acidic additives past a critical concentration causes phase separation of the wormlike mixtures. According to ultra-small-angle neutron scattering measurements, the incorporation of all additives (polar or non-polar, aromatic or non-aromatic) results in the formation of 'branched' wormlike networks. These findings emphasise the significant impact of impurities or additives on the properties of aqueous wormlike micellar systems formed by zwitterionic surfactants, and could also inform selection of solutes for controlling fluid rheology.

10.
J Colloid Interface Sci ; 540: 410-419, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30665167

RESUMO

Carbohydrates are appealing non-ionic surfactant head-groups as they are naturally abundant, generally biocompatible and biodegradable, and readily functionalized. Herein, we explore the phase behavior of seven novel carbohydrate-based surfactants (CBS) containing a tri-ethylene glycol (TEG) linker between a glucose head-group and alkyl tail-group, with linear saturated (C8-18) and cis-unsaturated (C18:1) alkyl chains. At high aqueous concentrations, these glycolipid-like surfactants transition into a variety of lyotropic liquid crystalline phases following an expected concentration phase sequence: hexagonal (H1) → bicontinuous cubic (V1) → lamellar (Lα). Using polarizing light microscopy (PLM), a binary (surfactant-water) phase diagram for each surfactant was constructed across a temperature range (25-80 °C) revealing thermotropic behavior and a broadening of liquid crystal phase regions with increasing alkyl chain length. There was also a significant difference between saturated and unsaturated alkyl chains, due to the cis-unsaturated 'statistical bend' lowering the melting point. Small-angle X-ray scattering (SAXS) measurements were performed to characterize the liquid crystal phases, identifying highly-ordered p6m,Ia3d, and Lα crystallographic space-groups with up to 7 resolved Bragg peaks, likely due to the highly anisometric nature of the TEG-linked surfactants. The phases were shown to be more numerous and exhibited greater thermal-stability compared to well-characterized alkyl glucoside surfactants lacking an oligoethylene spacer in the literature. Finally, the characteristic dimensions of each phase were determined to enable visualization of the internal microstructures, providing insight into the impact of molecular shape and the distribution of hydro-philicity/phobicity on the formation and stability of liquid crystalline mesophases.

11.
J Colloid Interface Sci ; 529: 464-475, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945017

RESUMO

Carbohydrates are appealing non-ionic surfactant head-groups as they are naturally abundant, generally biocompatible and biodegradable, and readily functionalized. Here, seven novel carbohydrate based surfactants (CBS) have been synthesized that contain a tri-ethylene glycol (TEG) linker between a glucose head-group and alkyl tail-group, with linear saturated (C8-18) and unsaturated (C18:1) alkyl chains. The aqueous adsorption and self-assembly of these surfactants was explored using tensiometry and small- and ultra-small-angle neutron scattering (SANS and USANS). With SANS we observed elongation from spherical to cylindrical micelles with increasing alkyl chain length. C16 and C18 chains exhibited pronounced Krafft points, yet formed worm-like micelles as single components upon heating to 43 and 48 °C respectively. The introduction of mono-unsaturation in the form of a C18:1 chain reduced the Krafft point and gave a surfactant that produced worm-like micelles in water without additives at room temperature. We also observed micellar elongation for C12 and C14 chains at 50 °C due to dehydration of the TEG linker. The room temperature worm-like micelles were further characterized using rheo-SANS and rheology, revealing the C18:1 surfactant to exhibit near ideal Maxwell behavior at low concentrations (2.9 wt.%). These results provide insight into structure-function relationships for CBS, and demonstrate a promising molecular candidate for the formation of viscoelastic worm-like micellar solutions.


Assuntos
Etilenoglicol/química , Glucosídeos/química , Micelas , Tensoativos/química , Difração de Nêutrons , Reologia , Espalhamento a Baixo Ângulo , Substâncias Viscoelásticas/química , Viscosidade
12.
Food Funct ; 5(11): 2775-82, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25250900

RESUMO

Oral processing of most foods is inherently destructive: solids are broken into particles before reassembly into a hydrated bolus while salivary enzymes degrade food components. In order to investigate the underlying physics driving changes during oral processing, we capture the transient rheological behaviour of a simulated potato chip bolus during hydration by a buffer with or without α-amylase. In the absence of amylase and for all oil contents and solids weight fractions tested, we find a collapse of the transient data when graphed according to simple Fickian diffusion. In the presence of amylase, we find effects on the transient and pseudo steady state bolus rheology. Within the first minute of mixing, the amylase degrades only ≈6% of the starch but that leads to an order of magnitude reduction in the bolus elasticity, as compared to the case without amylase. Thus, for an in vitro bolus, only a small amount of starch needs to be digested to have a large impact on the bolus rheology very soon after mixing.


Assuntos
Digestão , Amido/química , Animais , Modelos Biológicos , Reologia , Lanches , Solanum tuberosum/química , Suínos , Água/química , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA