Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 21(36): 12755-68, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26234516

RESUMO

Two novel synthetic strategies to covalently link a metallocene electron-donor unit to a chlorin ring are presented. In one approach, pyropheophorbide a is readily converted into its 13(1) -ferrocenyl dehydro derivative by nucleophilic addition of the ferrocenyl anion to the 13(1) -carbonyl group. In another approach, the corresponding 13(1) -pentamethylruthenocenyl derivative is synthesised from 13(1) -fulvenylchlorin by a facile ligand exchange/deprotonation reaction with the [RuCp*(cod)Cl] (Cp*=pentamethylcyclopentadienyl; cod=1,5-cyclooctadiene) complex. The resulting metallocene-chlorins exhibit reduced aromaticity, which was unequivocally supported by ring-current calculations based on the gauge-including magnetically induced current (GIMIC) method and by calculated nucleus-independent chemical shift (NICS) values. The negative ring current in the isocyclic E ring suggests the antiaromatic character of this moiety and also clarifies the spontaneous reactivity of the complexes with oxygen. The oxidation products were isolated and their electrochemical and photophysical properties were studied. The ruthenocene derivatives turned out to be stable under light irradiation and showed photoinduced charge transfer with charge-separation lifetimes of 152-1029 ps.

2.
Chemistry ; 17(37): 10312-22, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21850722

RESUMO

A new hexaazatriphenylene (HAT) derivative formed by the fusion of three HAT units has been prepared and its electronic and molecular structures have been fully characterized by optical and vibrational Raman spectroscopy, electrochemistry, solid-state UV and inverse photoemission spectroscopy (UPS and IPES), and by quantum-chemical calculations. A comparative HAT versus tri-HAT study was performed. The fusion of three HAT molecules causes modifications in the optical and electrochemical properties consistent with enhanced π-electron delocalization attained in a bigger planar core. Such combined experimental and theoretical studies are useful to balance chemical design with supramolecular engineering directed to find enhanced characteristics for new organic semiconductor applications.

3.
J Am Chem Soc ; 132(17): 6231-42, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20392046

RESUMO

A comprehensive photophysical and spectroscopic (electronic and Raman) study guided by density functional theory, DFT, CIS, and correlated ab initio calculations has been performed on a series of fully oxidized oligothiophenes with variable chain length, and up to four rings. A comparison with the properties of oligoenes and oligothiophenes is proposed. Absorption, fluorescence, lifetimes, flash-photolysis, phosphorescence, two-photon absorption, Raman, resonance Raman, and thermospectroscopy data are collected and interpreted according to the obtained theoretical results. The interest is focused on the ground electronic state and in the low-lying excited electronic states. Full oxygenation of the sulfur atoms of oligothiophenes results in: (i) restricted inter-ring isomerization such as observed from the absorption spectra; (ii) an effective quenching of fluorescence, and (iii) the appearance of dual emission. The emission features are explained by the interference of a dipole-allowed and a dipole-forbidden singlet excited states leading to simultaneous lighting from a local Frenkel and an intramolecular charge transfer photon-releasing configurations. These two excited states contribute to the broadening of the light emission spectrum. These properties highlight the similarity of these samples to that of oligoenes with comparable number of pi-electrons.


Assuntos
Tiofenos/química , Elétrons , Luz , Fenômenos Ópticos , Análise Espectral Raman
4.
Chemistry ; 15(11): 2548-59, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-19165843

RESUMO

What's your role? New oligothiophene-vinylene compounds have been synthesized to study the role of the conjugated chain in two different cases (see scheme; MV=mixed valence). The electronic and molecular structures were analyzed by means of electronic, X-ray photoelectron, and Raman spectroscopy, together with thermo spectroscopy, electrochemistry, and DFT calculations.New oligothiophene-vinylene compounds have been synthesized in order to study the role of the conjugated chain in two different cases: 1) when push-pull action operates between an electron-donor and an electron-acceptor group at the ends of the thiophene-vinylene conjugated chain, and 2) when mixed-valence action is induced by single oxidation of the same chain functionalized at both terminal positions with ferrocene groups leading to competition between the donor groups. The electronic and molecular structures are analyzed by means of electronic, X-ray photoelectron and Raman spectroscopies, together with thermospectroscopy, electrochemistry and density functional theory calculations. The cyclic voltammetry processes have been followed by spectrochemistry. It is shown that the radical cation of the diferrocenyl derivative is a class III mixed-valence system (i.e., fully delocalized) according to its Raman spectrum. Moreover, by Raman thermo-spectroscopy the thermal transition of this radical cation from a delocalized (class III, room temperature) to a localized (class II, -160 degrees C) state is scanned. In all cases the Raman study is paralleled by an electronic absorption spectroscopic analysis. Structure-property relationships are proposed for molecules of two important fields of very active research as that of the non-linear optics (i.e., organic optoelectronic) and that of the mixed-valence systems (i.e., charge-transfer processes).

5.
Chemistry ; 15(33): 8223-34, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19609987

RESUMO

We have synthesized three new molecules that have three thienylethynyl arms substituting a central benzene core and different electron donor/acceptor groups in the three remaining phenyl positions. The absorption, fluorescence, phosphorescence, and transient triplet-triplet spectra are analyzed in the light of the electronic structure of the ground and excited states obtained from quantum-chemical calculations. From the above, the relevant photophysical data (including quantum yields, lifetimes, and rate constants) could be derived. It was found that the major deactivation pathway is internal conversion, which competes with the fluorescence and intersystem crossing processes. For the three investigated compounds, we provide convincing theoretical support corroborating these findings and further conclusions based on the theoretical information obtained. These molecules are one of the very few cases in which the depolarization ratios, obtained from the NLO optical measurements, clearly reflect the octopolar configuration. Molecular hyperpolarizabilities have been measured and display a typical dependence on the donor-acceptor substitution pattern.

6.
J Am Chem Soc ; 130(43): 14028-9, 2008 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-18837499

RESUMO

The vibrational Raman spectra of a decathiophene are provided in three relevant oxidations states: for the radical cation, its class III mixed valence system and its "frozen, -170 degrees C" class II MV analogue; for the dication, its singlet biradical pi-dimer and its "hot, +70 degrees C" magnetically active triplet excited state. Everything is compatible with interpentathiophene charge delocalization occurring at distances of 4-5 A similar to those found in the crystals of pi-stacked oligothiophenes. This stresses the interest of this spectroscopic tool for the analyses of electronic processes in crystals or in thin films of conjugated organic molecules.

7.
Nanoscale ; 7(3): 1193-200, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25488718

RESUMO

The reactivity of several carbon nanoforms (CNFs), single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) and graphene, has been investigated through a combination of arylation and click chemistry Cu(I)-mediated azide-alkyne cycloaddition (CuAAC) reactions. The approach is based on the incorporation of electroactive π-extended tetrathiafulvalene (exTTF) units into the triazole linkers to modulate the electronic properties of the obtained conjugates. The introduction of strain, by bending the planar graphene sheet into a 3D carbon framework, is responsible for the singular reactivity observed in carbon nanotubes. The formed nanoconjugates were fully characterized by analytical, spectroscopic, and microscopic techniques (TGA, FTIR, Raman, UV-Vis-NIR, cyclic voltammetry, TEM and XPS). In the case of SWCNT conjugates, where the functionalization degree is higher, a series of steady-state and time resolved spectroscopy experiments revealed a photoinduced electron transfer from the exTTF unit to the electron-accepting SWCNT.

9.
J Chem Phys ; 127(16): 164704, 2007 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-17979368

RESUMO

In this article, we present a computational study of the nonlinear optical properties of pyridine-based octupolar molecules in their neutral and fully triprotonated states. The effect of the core substitution and the degree of conjugation with the periphery has been also established and confirms the possibility of fine-tuning the nonlinear optical response. Computations involving the time-dependent density-functional theory approach serve to further explore the existence of excited states with nonzero dipole moment. From these results, the origin of the high second-order nonlinear optical activity upon protonation is addressed.

10.
J Chem Phys ; 126(7): 074701, 2007 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-17328621

RESUMO

The Raman spectra of a series of push-pull molecules containing probenzenoid or quinoid spacers which are substituted with 1,3-dithiol-2-ylidene as donor and dicyano-methylene or barbituric acid as acceptors have been analyzed. The experimental spectra have been assigned and interpreted according to density functional theory calculations. Correlations between the Raman spectra of the isolated spacers and of the substituted molecules have been done. Raman bands in the 1620-1560 cm-1 interval provide vibrational markers of the quinoid<-->aromatic structural evolution. This finding is supported by a careful inspection of geometrical parameters, namely, bond length alteration data and particular bond distances. As a result, the peak positions and relative intensities of these Raman features can be used to evaluate the benzenoid character of the spacer as a function of the donor/acceptor substitution pattern. This paper shows that Raman spectroscopy is a powerful spectroscopic tool for the analysis of the conjugational properties (i.e., intramolecular donor-->acceptor charge transfer) of new organic materials.

11.
J Phys Chem A ; 110(23): 7422-30, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16759131

RESUMO

In this work, the interactions between heteroatoms (S, Se, and Te) and conjugated skeletons are analyzed. The study is carried out by using electronic absorption and fluorescence spectroscopies, electrochemistry, vibrational Raman spectroscopy, and theoretical calculations in the framework of DFT and TD-DFT theories. Optical spectra are described in terms of one-electron promotions between orbitals around the energy gap. Electrochemistry, in the framework of the Koopman's approach, is also interpreted. The vibrational Raman spectra are assigned to molecular modes and the evolution changing the heteroatom is addressed and an effective tuning of these properties is found. Part of this modulation is associated with local electronic interactions depending on the relative S, Se, and Te electronegativities. Unconventional long-range heteroatom-heteroatom interactions have been proposed which arise from the existence of effective pi-conjugated channels. The molecular level understanding of structure-property relationships in these organic/inorganic semiconductors are of great interest in the interdisciplinary area of material science.


Assuntos
Calcogênios/química , Óptica e Fotônica , Compostos Organometálicos/química , Simulação por Computador , Eletroquímica , Modelos Químicos , Estrutura Molecular , Compostos Organosselênicos/química , Oxirredução , Semicondutores , Sensibilidade e Especificidade , Espectrometria de Fluorescência/métodos , Análise Espectral Raman/métodos , Compostos de Enxofre/química , Telúrio/química , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA