Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 21(9): e49807, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32657019

RESUMO

This study investigated the role of CDK4 in the oxidative metabolism of brown adipose tissue (BAT). BAT from Cdk4-/- mice exhibited fewer lipids and increased mitochondrial volume and expression of canonical thermogenic genes, rendering these mice more resistant to cold exposure. Interestingly, these effects were not BAT cell-autonomous but rather driven by increased sympathetic innervation. In particular, the ventromedial hypothalamus (VMH) is known to modulate BAT activation via the sympathetic nervous system. We thus examined the effects of VMH neuron-specific Cdk4 deletion. These mice display increased sympathetic innervation and enhanced cold tolerance, similar to Cdk4-/- mice, in addition to browning of scWAT. Overall, we provide evidence showing that CDK4 modulates thermogenesis by regulating sympathetic innervation of adipose tissue depots through hypothalamic nuclei, including the VMH. This demonstrates that CDK4 not only negatively regulates oxidative pathways, but also modulates the central regulation of metabolism through its action in the brain.


Assuntos
Tecido Adiposo Branco , Termogênese , Adipócitos Marrons , Tecido Adiposo Marrom , Animais , Hipotálamo , Camundongos , Termogênese/genética
2.
Dev Biol ; 418(1): 75-88, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27521049

RESUMO

Mammalian Host-Cell Factor 1 (HCF-1), a transcriptional co-regulator, plays important roles during the cell-division cycle in cell culture, embryogenesis as well as adult tissue. In mice, HCF-1 is encoded by the X-chromosome-linked Hcfc1 gene. Induced Hcfc1(cKO/+) heterozygosity with a conditional knockout (cKO) allele in the epiblast of female embryos leads to a mixture of HCF-1-positive and -deficient cells owing to random X-chromosome inactivation. These embryos survive owing to the replacement of all HCF-1-deficient cells by HCF-1-positive cells during E5.5 to E8.5 of development. In contrast, complete epiblast-specific loss of HCF-1 in male embryos, Hcfc1(epiKO/Y), leads to embryonic lethality. Here, we characterize this lethality. We show that male epiblast-specific loss of Hcfc1 leads to a developmental arrest at E6.5 with a rapid progressive cell-cycle exit and an associated failure of anterior visceral endoderm migration and primitive streak formation. Subsequently, gastrulation does not take place. We note that the pattern of Hcfc1(epiKO/Y) lethality displays many similarities to loss of ß-catenin function. These results reveal essential new roles for HCF-1 in early embryonic cell proliferation and development.


Assuntos
Padronização Corporal/genética , Movimento Celular/genética , Proliferação de Células/genética , Desenvolvimento Embrionário/genética , Fator C1 de Célula Hospedeira/genética , Animais , Ciclo Celular/genética , Endoderma/citologia , Endoderma/metabolismo , Feminino , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Ligados ao Cromossomo X/genética , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais , beta Catenina/metabolismo
3.
J Allergy Clin Immunol ; 135(6): 1625-35.e5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25556996

RESUMO

BACKGROUND: Remodeling of quiescent vessels with increases in permeability, vasodilatation, and edema are hallmarks of inflammatory disorders. Factors involved in this type of remodeling represent potential therapeutic targets. OBJECTIVES: We investigated whether the nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) ß/δ, a regulator of metabolism, fibrosis, and skin homeostasis, is involved in regulation of this type of remodeling. METHODS: Wild-type and various Pparb/d mutant mice were used to monitor dermal acute vascular hyperpermeability (AVH) and passive systemic anaphylaxis-induced hypothermia and edema. PPARß/δ-dependent kinase activation and remodeling of endothelial cell-cell junctions were addressed by using human endothelial cells. RESULTS: AVH and dilatation of dermal microvessels stimulated by vascular endothelial growth factor A, histamine, and thrombin are severely compromised in PPARß/δ-deficient mice. Selective deletion of the Pparb/d-encoding gene in endothelial cells in vivo similarly limits dermal AVH and vasodilatation, providing evidence that endothelial PPARß/δ is the major player in regulating acute dermal microvessel remodeling. Furthermore, endothelial PPARß/δ regulatory functions are not restricted to the skin vasculature because its deletion in the endothelium, but not in smooth muscle cells, also leads to reduced systemic anaphylaxis, the most severe form of allergic reaction, in which an acute vascular response plays a key role. PPARß/δ-dependent AVH activation likely involves the activation of mitogen-activated protein kinase and Akt pathways and leads to downstream destabilization of endothelial cell-cell junctions. CONCLUSION: These results unveil not only a novel function of PPARß/δ as a direct regulator of acute vessel permeability and dilatation but also provide evidence that antagonizing PPARß/δ represents an important strategy to consider for moderating diseases with altered endothelial integrity, such as acute inflammatory and allergic disorders.


Assuntos
Anafilaxia/imunologia , Permeabilidade Capilar/imunologia , Células Endoteliais/imunologia , PPAR delta/imunologia , PPAR beta/imunologia , Pele/imunologia , Anafilaxia/genética , Anafilaxia/patologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Edema/genética , Edema/imunologia , Edema/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica , Histamina/farmacologia , Hipotermia/genética , Hipotermia/imunologia , Hipotermia/patologia , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/imunologia , Junções Intercelulares/patologia , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , PPAR delta/deficiência , PPAR delta/genética , PPAR beta/deficiência , PPAR beta/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais , Pele/irrigação sanguínea , Pele/efeitos dos fármacos , Pele/patologia , Trombina/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
4.
Kidney Int ; 87(5): 940-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25565311

RESUMO

Urate is the metabolic end point of purines in humans. Although supra-physiological plasma urate levels are associated with obesity, insulin resistance, dyslipidemia, and hypertension, a causative role is debated. We previously established a mouse model of hyperuricemia by liver-specific deletion of Glut9, a urate transporter that provides urate to the hepatocyte enzyme uricase. These LG9 knockout mice show mild hyperuricemia (120 µmol/l), which can be further increased by the urate precursor inosine. Here, we explored the role of progressive hyperuricemia on the cardiovascular function. Arterial blood pressure and heart rate were periodically measured by telemetry over 6 months in LG9 knockout mice supplemented with incremental amounts of inosine in a normal chow diet. This long-term inosine treatment elicited a progressive increase in uricemia up to 300 µmol/l; however, it did not modify heart rate or mean arterial blood pressure in LG9 knockout compared with control mice. Inosine treatment did not alter cardiac morphology or function measured by ultrasound echocardiography. However, it did induce mild renal dysfunction as revealed by higher plasma creatinine levels, lower glomerular filtration rate, and histological signs of chronic inflammation and fibrosis. Thus, in LG9 knockout mice, inosine-induced hyperuricemia was not associated with hypertension despite partial renal deficiency. This does not support a direct role of urate in the control of blood pressure.


Assuntos
Pressão Sanguínea , Proteínas Facilitadoras de Transporte de Glucose/genética , Frequência Cardíaca , Hiperuricemia/fisiopatologia , Animais , Modelos Animais de Doenças , Ecocardiografia , Hiperuricemia/diagnóstico por imagem , Hiperuricemia/etiologia , Inosina , Rim/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Am J Physiol Renal Physiol ; 305(5): F786-95, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23804456

RESUMO

Plasma urate levels are higher in humans than rodents (240-360 vs. ∼30 µM) because humans lack the liver enzyme uricase. High uricemia in humans may protect against oxidative stress, but hyperuricemia also associates with the metabolic syndrome, and urate and uric acid can crystallize to cause gout and renal dysfunctions. Thus, hyperuricemic animal models to study urate-induced pathologies are needed. We recently generated mice with liver-specific ablation of Glut9, a urate transporter providing access of urate to uricase (LG9KO mice). LG9KO mice had moderately high uricemia (∼120 µM). To further increase their uricemia, here we gavaged LG9KO mice for 3 days with inosine, a urate precursor; this treatment was applied in both chow- and high-fat-fed mice. In chow-fed LG9KO mice, uricemia peaked at 300 µM 2 h after the first gavage and normalized 24 h after the last gavage. In contrast, in high-fat-fed LG9KO mice, uricemia further rose to 500 µM. Plasma creatinine strongly increased, indicating acute renal failure. Kidneys showed tubule dilation, macrophage infiltration, and urate and uric acid crystals, associated with a more acidic urine. Six weeks after inosine gavage, plasma urate and creatinine had normalized. However, renal inflammation, fibrosis, and organ remodeling had developed despite the disappearance of urate and uric acid crystals. Thus, hyperuricemia and high-fat diet feeding combined to induce acute renal failure. Furthermore, a sterile inflammation caused by the initial crystal-induced lesions developed despite the disappearance of urate and uric acid crystals.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Proteínas Facilitadoras de Transporte de Glucose/deficiência , Hiperuricemia/sangue , Animais , Cristalização , Dieta Hiperlipídica , Concentração de Íons de Hidrogênio , Hiperuricemia/etiologia , Inflamação/induzido quimicamente , Inosina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Transportadores de Ânions Orgânicos/deficiência , Ácido Úrico/sangue , Urina/fisiologia
6.
Sci Rep ; 10(1): 11956, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686713

RESUMO

Maf1-/- mice are lean, obesity-resistant and metabolically inefficient. Their increased energy expenditure is thought to be driven by a futile RNA cycle that reprograms metabolism to meet an increased demand for nucleotides stemming from the deregulation of RNA polymerase (pol) III transcription. Metabolic changes consistent with this model have been reported in both fasted and refed mice, however the impact of the fasting-refeeding-cycle on pol III function has not been examined. Here we show that changes in pol III occupancy in the liver of fasted versus refed wild-type mice are largely confined to low and intermediate occupancy genes; high occupancy genes are unchanged. However, in Maf1-/- mice, pol III occupancy of the vast majority of active loci in liver and the levels of specific precursor tRNAs in this tissue and other organs are higher than wild-type in both fasted and refed conditions. Thus, MAF1 functions as a chronic repressor of active pol III loci and can modulate transcription under different conditions. Our findings support the futile RNA cycle hypothesis, elaborate the mechanism of pol III repression by MAF1 and demonstrate a modest effect of MAF1 on global translation via reduced mRNA levels and translation efficiencies for several ribosomal proteins.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase III/genética , Proteínas Repressoras/metabolismo , Animais , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional/métodos , Ontologia Genética , Estudo de Associação Genômica Ampla , Fígado/metabolismo , Camundongos , Ligação Proteica , Precursores de RNA , RNA de Transferência/genética , Proteínas Repressoras/genética , Transcriptoma
7.
iScience ; 23(6): 101163, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32464595

RESUMO

Cyclin-dependent kinases (CDKs) are emerging regulators of adipose tissue metabolism. Here we aimed to explore the role of CDK7 in thermogenic fat. We found that CDK7 brown adipose tissue (BAT)-specific knockout mice (Cdk7bKO) have decreased BAT mass and impaired ß3-adrenergic signaling and develop hypothermia upon cold exposure. We found that loss of CDK7 in BAT disrupts the induction of thermogenic genes in response to cold. However, Cdk7bKO mice do not show systemic metabolic dysfunction. Increased expression of genes of the creatine metabolism compensates for the heat generation in the BAT of Cdk7bKO mice in response to cold. Finally, we show that CDK7 is required for beta 3-adrenergic agonist-induced browning of white adipose tissue (WAT). Indeed, Cdk7 ablation in all adipose tissues (Cdk7aKO) has impaired browning in WAT. Together, our results demonstrate that CDK7 is an important mediator of beta-adrenergic signaling in thermogenic brown and beige fat.

8.
Mol Cell Biol ; 39(5)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30559308

RESUMO

Host-cell factor 1 (HCF-1), encoded by the ubiquitously expressed X-linked gene Hcfc1, is an epigenetic coregulator important for mouse development and cell proliferation, including during liver regeneration. We used a hepatocyte-specific inducible Hcfc1 knock-out allele (called Hcfc1hepKO), to induce HCF-1 loss in hepatocytes of hemizygous Hcfc1hepKO/Y males by four days. In heterozygous Hcfc1hepKO/+ females, owing to random X-chromosome inactivation, upon Hcfc1hepKO allele induction, a 50/50 mix of HCF-1 positive and negative hepatocyte clusters is engineered. The livers with Hcfc1hepKO/Y hepatocytes displayed a 21-24-day terminal non-alcoholic fatty liver (NAFL) followed by non-alcoholic steatohepatitis (NASH) disease progression typical of severe NAFL disease (NAFLD). In contrast, in livers with heterozygous Hcfc1hepKO/+ hepatocytes, HCF-1-positive hepatocytes replaced HCF-1-negative hepatocytes and revealed only mild-NAFL development. Loss of HCF-1 led to loss of PGC1α protein, probably owing to its destabilization, and deregulation of gene expression particularly of genes involved in mitochondrial structure and function, likely explaining the severe Hcfc1 hepKO/Y liver pathology. Thus, HCF-1 is essential for hepatocyte function, likely playing both transcriptional and non-transcriptional roles. These genetically-engineered loss-of-HCF-1 mice can be used to study NASH as well as NAFLD resolution.


Assuntos
Fator C1 de Célula Hospedeira/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Alelos , Animais , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Genes Ligados ao Cromossomo X , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética
9.
Cancer Res ; 79(20): 5245-5259, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31395606

RESUMO

Cyclin-dependent kinase 4 (CDK4) is well-known for its role in regulating the cell cycle, however, its role in cancer metabolism, especially mTOR signaling, is undefined. In this study, we established a connection between CDK4 and lysosomes, an emerging metabolic organelle crucial for mTORC1 activation. On the one hand, CDK4 phosphorylated the tumor suppressor folliculin (FLCN), regulating mTORC1 recruitment to the lysosomal surface in response to amino acids. On the other hand, CDK4 directly regulated lysosomal function and was essential for lysosomal degradation, ultimately regulating mTORC1 activity. Pharmacologic inhibition or genetic inactivation of CDK4, other than retaining FLCN at the lysosomal surface, led to the accumulation of undigested material inside lysosomes, which impaired the autophagic flux and induced cancer cell senescence in vitro and in xenograft models. Importantly, the use of CDK4 inhibitors in therapy is known to cause senescence but not cell death. To overcome this phenomenon and based on our findings, we increased the autophagic flux in cancer cells by using an AMPK activator in combination with a CDK4 inhibitor. The cotreatment induced autophagy (AMPK activation) and impaired lysosomal function (CDK4 inhibition), resulting in cell death and tumor regression. Altogether, we uncovered a previously unknown role for CDK4 in lysosomal biology and propose a novel therapeutic strategy to target cancer cells. SIGNIFICANCE: These findings uncover a novel function of CDK4 in lysosomal biology, which promotes cancer progression by activating mTORC1; targeting this function offers a new therapeutic strategy for cancer treatment.


Assuntos
Quinase 4 Dependente de Ciclina/fisiologia , Lisossomos/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Neoplasias/fisiologia , Adenilato Quinase/metabolismo , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Autofagossomos/fisiologia , Autofagia/fisiologia , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Compostos de Bifenilo , Linhagem Celular Tumoral , Senescência Celular/fisiologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Sinergismo Farmacológico , Feminino , Técnicas de Inativação de Genes , Humanos , Insulina/fisiologia , Lisossomos/ultraestrutura , Camundongos , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas Proto-Oncogênicas/metabolismo , Pironas/farmacologia , Pironas/uso terapêutico , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/fisiologia , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Transl Med ; 11(502)2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341063

RESUMO

The functional interactions between the gut microbiota and the host are important for host physiology, homeostasis, and sustained health. We compared the skeletal muscle of germ-free mice that lacked a gut microbiota to the skeletal muscle of pathogen-free mice that had a gut microbiota. Compared to pathogen-free mouse skeletal muscle, germ-free mouse skeletal muscle showed atrophy, decreased expression of insulin-like growth factor 1, and reduced transcription of genes associated with skeletal muscle growth and mitochondrial function. Nuclear magnetic resonance spectrometry analysis of skeletal muscle, liver, and serum from germ-free mice revealed multiple changes in the amounts of amino acids, including glycine and alanine, compared to pathogen-free mice. Germ-free mice also showed reduced serum choline, the precursor of acetylcholine, the key neurotransmitter that signals between muscle and nerve at neuromuscular junctions. Reduced expression of genes encoding Rapsyn and Lrp4, two proteins important for neuromuscular junction assembly and function, was also observed in skeletal muscle from germ-free mice compared to pathogen-free mice. Transplanting the gut microbiota from pathogen-free mice into germ-free mice resulted in an increase in skeletal muscle mass, a reduction in muscle atrophy markers, improved oxidative metabolic capacity of the muscle, and elevated expression of the neuromuscular junction assembly genes Rapsyn and Lrp4 Treating germ-free mice with short-chain fatty acids (microbial metabolites) partly reversed skeletal muscle impairments. Our results suggest a role for the gut microbiota in regulating skeletal muscle mass and function in mice.


Assuntos
Microbioma Gastrointestinal/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Animais , Linhagem Celular , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL
11.
Cancer Res ; 78(22): 6447-6461, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30185551

RESUMO

In addition to improving insulin sensitivity in type 2 diabetes, the thiazolidinedione family of compounds and the pharmacologic activation of their best-characterized target PPARγ have been proposed as a therapeutic option for cancer treatment. In this study, we reveal a new mode of action for the thiazolidinedione rosiglitazone that can contribute to tumorigenesis. Rosiglitazone activated a tumorigenic paracrine communication program in a subset of human melanoma cells that involves the secretion of cytokines, chemokines, and angiogenic factors. This complex blend of paracrine signals activated nonmalignant fibroblasts, endothelial cells, and macrophages in a tumor-friendly way. In agreement with these data, rosiglitazone promoted human melanoma development in xenografts, and tumors exposed to rosiglitazone exhibited enhanced angiogenesis and inflammation. Together, these findings establish an important tumorigenic action of rosiglitazone in a subset of melanoma cells. Although studies conducted on cohorts of diabetic patients report overall benefits of thiazolidinediones in cancer prevention, our data suggest that exposure of established tumors to rosiglitazone may be deleterious.Significance: These findings uncover a novel mechanism by which the thiazolidinedione compound rosiglitazone contributes to tumorigenesis, thus highlighting a potential risk associated with its use in patients with established tumors. Cancer Res; 78(22); 6447-61. ©2018 AACR.


Assuntos
Melanoma/metabolismo , PPAR gama/agonistas , Rosiglitazona/farmacologia , Neoplasias Cutâneas/metabolismo , Células Estromais/metabolismo , Indutores da Angiogênese/metabolismo , Animais , Carcinogênese , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Inflamação , Leucócitos Mononucleares/citologia , Macrófagos/efeitos dos fármacos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Monócitos/metabolismo , Metástase Neoplásica , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , PPAR gama/metabolismo , Comunicação Parácrina , Neoplasias Cutâneas/patologia , Linfócitos T/citologia
12.
Hepatol Commun ; 1(9): 871-885, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29404499

RESUMO

Mammalian partial hepatectomy (PH) induces an orchestrated compensatory hyperplasia, or regeneration, in remaining tissue to restore liver mass; during this process, liver functions are maintained. We probed this process in mice with feeding- and light/dark-entrained animals subjected to sham or PH surgery. Early on (i.e., 10 hours), irrespective of sham or PH surgery, hepatocytes equidistant from the portal and central veins (i.e., midlobular) accumulated the G1-phase cell-division-cycle marker cyclin D1. By 24 hours, however, cyclin D1 disappeared absent PH but was reinforced in midlobular hepatocytes after PH. At 48 hours after PH and 2 hours fasting, synchronously mitotic hepatocytes possessed less glycogen than surrounding nonproliferating hepatocytes. The differential glycogen content generated a conspicuous entangled pattern of proliferating midlobular and nonproliferating periportal and pericentral hepatocytes. The nonproliferating hepatocytes maintained aspects of normal liver properties. Conclusion: In the post-PH regenerating mouse liver, a binary switch segregates midlobular cells to proliferate side-by-side with nonproliferating periportal and pericentral cells, which maintain metabolic functions. Our results also indicate that mechanisms of liver regeneration display evolutionary flexibility. (Hepatology Communications 2017;1:871-885).

14.
EMBO Mol Med ; 6(1): 80-98, 2014 01.
Artigo em Inglês | MEDLINE | ID: mdl-24203162

RESUMO

Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) ß/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARß/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARß/δ-null mice developed fewer and smaller skin tumours, and a PPARß/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARß/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARß/δ and SRC and TGFß1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARß/δ modulators to attenuate the development of several epithelial cancers.


Assuntos
Carcinoma de Células Escamosas/patologia , PPAR delta/metabolismo , PPAR beta/metabolismo , Neoplasias Cutâneas/patologia , Pele/efeitos da radiação , Raios Ultravioleta , Quinases da Família src/metabolismo , Animais , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/metabolismo , Ativação Enzimática , Transição Epitelial-Mesenquimal/efeitos da radiação , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Camundongos , Camundongos Pelados , Camundongos Knockout , PPAR delta/antagonistas & inibidores , PPAR delta/genética , PPAR beta/antagonistas & inibidores , PPAR beta/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos da radiação , Pele/metabolismo , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Quinases da Família src/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA