Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Air Med J ; 43(2): 84-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38490790

RESUMO

Current first-line therapies for seizure management recommend benzodiazepines, which target gamma-aminobutyric acid type A channels to stop the seizure activity. However, seizures may be refractory to traditional first-line therapies, transitioning into status epilepticus and becoming resistant to gamma-aminobutyric acid type A augmenting drugs. Although there are other antiseizure medications available for clinicians to use in the intensive care unit, these options can be less readily available outside of the intensive care unit and entirely absent in the prehospital setting. Instead, patients frequently receive multiple doses of first-line agents with increased risk of hemodynamic or airway collapse. Ketamine is readily available in the prehospital setting and emergency department, has well-established antiseizure effects with a favorable safety profile, and is a drug often used for several other indications. This article aimed to explore the utilization of ketamine for seizure management in the prehospital setting, reviewing seizure pathophysiology, established treatment mechanisms of action and pharmacokinetics, and potential benefits of early ketamine use in status epilepticus.


Assuntos
Ketamina , Estado Epiléptico , Humanos , Ketamina/uso terapêutico , Anticonvulsivantes/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Convulsões/tratamento farmacológico , Serviço Hospitalar de Emergência , Ácido gama-Aminobutírico/uso terapêutico
2.
Pediatr Neurol ; 152: 169-176, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295718

RESUMO

BACKGROUND: Pediatric convulsive status epilepticus (CSE) is a neurological emergency utilizing electroencephalography (EEG) to guide therapeutic interventions. Guidelines recommend EEG initiation within one hour of seizure onset, but logistic and structural barriers often lead to significant delays. We aimed to reduce the time to EEG in pediatric CSE. METHODS: From 2017 to 2022, we implemented process improvements, including EEG order sets with priority-based timing guidance, technologist workflow changes, a satisfaction survey, and feedback from key stakeholder groups, over five plan-do-study-act (PDSA) cycles. Seizure start time, time of EEG order, and time to EEG initiation were extracted. Time to interpretable EEG was determined from manual review of the EEG tracing. RESULTS: Time from EEG order to interpretable EEG decreased by nearly 50%, from a median of 90 minutes to 48 minutes. There were clinically and statistically significant improvements in time from EEG order to EEG initiation, time from EEG order to interpretable EEG, and EEG start to interpretable EEG. Ongoing provider education and guidance enabled improvements, whereas a new electronic health care record negatively impacted electronic ordering. EEG technologists reported that they understood the importance of emergent EEG for clinical care and did not find that the new workflow caused excessive disruption. CONCLUSIONS: Timely access to EEG for pediatric patients with CSE can be improved through clinical processes that use existing devices and that maintain the benefits of full-montage EEG recordings. Similar process improvement efforts may be generalizable to other institutions to increase adherence to guidelines and provide improved care.


Assuntos
Melhoria de Qualidade , Estado Epiléptico , Criança , Humanos , Estado Epiléptico/tratamento farmacológico , Eletroencefalografia , Convulsões/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA