Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(4): 947-950, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359223

RESUMO

Traversing each WSS in ultra-dense WDM networks narrows the signal spectra. Simulations and experiments demonstrate, for the first time to our knowledge, spectrum narrowing mitigation based on RNN. Numerical simulations show that the RNN-based demodulation with impairment-aware optical path control significantly enlarges the transmission distance. Transmission experiments in the extended C-band successfully confirm an extension of the transmissible distance of 16QAM signals by over 500 km.

2.
Opt Express ; 29(24): 39930-39945, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809347

RESUMO

The fast and widely tunable wavelength bank is a key enabler in creating wavelength-routing optical switches that do not use fast wavelength tunable lasers. A cost-effective design criterion needs to be developed before it can be applied to intra data center networks. In this paper, we develop a systematic method for designing a wavelength bank that yields high port-count and fast wavelength-routing optical switches for intra data center application. The wavelength bank is created with fixed-wavelength laser sources and wavelength-tunable filters with rapid wavelength selectivity. To optimize the optical switching system that uses the wavelength bank for supplying local oscillator (LO) lights for coherent detection, various parameters are analyzed, including effective bandwidth, laser output power, loss distribution, splitter port count, and optical amplifier gain. We carry out numerical simulations for optimizing the tradeoff between system performance and cost. To verify the designed wavelength bank, a silicon ring filter is newly fabricated with an average fiber-to-fiber insertion loss of 5.3 dB over a 22-nm bandwidth. Using 256-Gb/s DP-QPSK signals, experiments demonstrate a 1,024×1,024 optical switch that uses a fabricated silicon ring filter. The effectiveness of the scalable and fast-tunable LO bank is verified by achieving 262.1-Tb/s switch throughput with switching time under 18 µs.

3.
Opt Express ; 27(13): 18549-18560, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252796

RESUMO

Photonic networks based on wavelength-selective switches (WSSs) can transport wavelength-division-multiplexed (WDM) signals in a cost-effective manner. To accommodate the ever-increasing network traffic, the spectral efficiency should be maximized by minimizing the bandwidth of the guardbands inserted between WDM signals. Quasi-Nyquist WDM systems are seen as offering the highest spectral efficiency in a feasible way. However, highly dense WDM systems suffer from the signal-spectrum narrowing induced by the non-rectangular passbands of WSSs. Furthermore, widely deployed WSSs cannot process quasi-Nyquist WDM signals since the signal-alignment granularity does not match the passband resolution of the WSSs. This paper proposes a network architecture that enables quasi-Nyquist WDM networking with widely deployed WSSs. Through intensive network analyses based on computer simulations, we confirm that it has 30.8% higher spectral efficiency than conventional networks. Its feasibility is verified by transmission experiments on 72-channel 32-Gbaud/400-Gbps dual-carrier dual-polarization 16-ary quadrature-amplitude-modulation signals aligned with 66.6-GHz spacing in the full C-band. The net fiber capacity of 28.8 Tbps, the transmission distance of 900 km, and the hop count of 9 are attained by our proposed quasi-Nyquist WDM networking scheme.

4.
Opt Express ; 25(15): 17982-17994, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789286

RESUMO

To create reliable high-capacity photonic networks, we propose a novel optical cross-connect (OXC) architecture that offers failure resiliency and port scalability, simultaneously. The proposed OXC employs the subsystem-modular structure to attain the port scalability, where the use of 1xM wavelength selective switches (WSSs) or MxM WSSs is considered. Furthermore, by introducing an intra-node protection mechanism suited to each OXC architecture, our proposed scheme offers high reliability while retaining the port scalability. Through computer simulations, we evaluate the total number of WSSs needed in a network and the annual path downtime due to WSS failures. The proposed OXC architecture can drastically decrease the annual path downtime with just a small number of WSSs.

5.
Opt Express ; 25(14): 15838-15853, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789096

RESUMO

A novel compact OXC node architecture that combines WSSs and arrays of small scale optical delivery-coupling type switches ("DCSWs") is proposed. Unlike conventional OXC nodes, the WSSs are only responsible for dynamic path bundling ("flexible waveband") while the small scale optical switches route bundled path groups. A network design algorithm that is aware of the routing scheme is also proposed, and numerical experiments elucidate that the necessary number of WSSs and amplifiers can be significantly reduced. A prototype of the proposed OXC is also developed using monolithic arrayed DCSWs. Transmission experiments on the prototype verify the proposal's technical feasibility.

6.
Opt Express ; 24(6): 6213-28, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136815

RESUMO

In order to mitigate the signal spectrum narrowing caused by optical filtering at nodes, an adequate guard band is needed between optical channels, which degrades the frequency utilization of optical fibers. In this study, we propose a grouped routing based network architecture that minimizes spectrum narrowing while greatly improving spectral efficiency. Coarse granular routing at GRE (grouped routing entity) level is employed at each ROADM node, but fine granular add/drop is adopted to retain high frequency utilization. Optical channels are packed densely in each GRE, and sufficient guard bands are inserted between GREs. As a result, signal spectrum narrowing is minimized and efficient spectrum utilization is achieved. Network design/control algorithms that support both static and dynamic traffic growth are developed. Extensive simulations demonstrate the effectiveness of the proposed architecture. To implement the scheme, current LCOS-based ROADMs are applied without any hardware changes; only the control schema are modified.

7.
Opt Express ; 23(11): 14796-805, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072838

RESUMO

We propose a cost-effective and scalable OXC/ROADM that consists of a subsystem-modular express switch part and a transponder-bank-based add/drop part. The effectiveness of the proposed architecture is verified via a hardware scale evaluation, network performance simulations, and transmission experiments. The architecture enables large throughput and offers significant hardware-scale reductions with marginal fiber-utilization penalty against the conventional architectures. A part of the OXC/ROADM designed to accommodate 35x35 express fiber ports and 2,800 transponders for add/drop is constructed. Its net throughput reaches 314 Tbps using 80 channels of 120-Gbps signal (30-Gbaud dual-polarization quadrature phase-shift-keying signals with 7% overhead are assumed).

8.
Opt Express ; 20(24): 26236-51, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187478

RESUMO

We propose a novel configuration of the finite-impulse-response (FIR) filter adapted by the phase-dependent decision-directed least-mean-square (DD-LMS) algorithm in digital coherent optical receivers. Since fast carrier-phase fluctuations are removed from the error signal which updates tap coefficients of the FIR filter, we can achieve stable adaptation of filter-tap coefficients for higher-order quadrature-amplitude modulation (QAM) signals. Computer simulations show that our proposed scheme is much more tolerant to the phase noise and the frequency offset than the conventional DD-LMS scheme. Such theoretical predictions are also validated experimentally by using a 10-Gsymbol/s dual-polarization 16-QAM signal.


Assuntos
Algoritmos , Tecnologia de Fibra Óptica/instrumentação , Filtração/instrumentação , Modelos Teóricos , Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Humanos
9.
Opt Express ; 18(26): 26929-36, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21196969

RESUMO

We propose a novel and unified algorithm that estimates linear impairments in optical transmission systems from tap coefficients of an adaptive finite-impulse response (FIR) filter in a coherent optical receiver. Measurable impairments include chromatic dispersion (CD), differential group delay (DGD) between two principal states of polarization, second-order polarization-mode dispersion (second-order PMD), and polarization-dependent loss (PDL). We validate our multi-impairment monitoring algorithm by dual-polarization quadrature phase-shift keying (QPSK) transmission experiments.


Assuntos
Filtração/instrumentação , Dispositivos Ópticos , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
10.
Opt Express ; 17(3): 1435-41, 2009 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19188971

RESUMO

We demonstrate unrepeated 200-km transmission of 40-Gbit/s 16-QAM signals using a digital coherent receiver, where the decision-directed carrier-phase estimation is employed. The phase fluctuation is effectively eliminated in the 16-QAM system with such a phase-estimation method, when the linewidth of semiconductor lasers for the transmitter and the local oscillator is 150 kHz. Finite-impulse-response (FIR) filters at the receiver compensate for 4,000-ps/nm group-velocity dispersion (GVD) of the 200-km-long single-mode fiber and a part of self-phase modulation (SPM) in the digital domain. In spite of the launched power limitation due to SPM, the acceptable bit-error rate performance is obtained owing to high sensitivity of the digital coherent receiver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA