Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
PLoS Biol ; 20(11): e3001871, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36383605

RESUMO

Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Eliminação de Partículas Virais , Anticorpos Bloqueadores
2.
Int J Cancer ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031967

RESUMO

Single-cell analyses can be confounded by assigning unrelated groups of cells to common developmental trajectories. For instance, cancer cells and admixed normal epithelial cells could adopt similar cell states thus complicating analyses of their developmental potential. Here, we develop and benchmark CCISM (for Cancer Cell Identification using Somatic Mutations) to exploit genomic single nucleotide variants for the disambiguation of cancer cells from genomically normal non-cancer cells in single-cell data. We find that our method and others based on gene expression or allelic imbalances identify overlapping sets of colorectal cancer versus normal colon epithelial cells, depending on molecular characteristics of individual cancers. Further, we define consensus cell identities of normal and cancer epithelial cells with higher transcriptome cluster homogeneity than those derived using existing tools. Using the consensus identities, we identify significant shifts of cell state distributions in genomically normal epithelial cells developing in the cancer microenvironment, with immature states increased at the expense of terminal differentiation throughout the colon, and a novel stem-like cell state arising in the left colon. Trajectory analyses show that the new cell state extends the pseudo-time range of normal colon stem-like cells in a cancer context. We identify cancer-associated fibroblasts as sources of WNT and BMP ligands potentially contributing to increased plasticity of stem cells in the cancer microenvironment. Our analyses advocate careful interpretation of cell heterogeneity and plasticity in the cancer context and the consideration of genomic information in addition to gene expression data when possible.

3.
Br J Cancer ; 130(8): 1249-1260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361045

RESUMO

BACKGROUND: The aim of this study was to analyse transcriptomic differences between primary and recurrent high-grade serous ovarian carcinoma (HGSOC) to identify prognostic biomarkers. METHODS: We analysed 19 paired primary and recurrent HGSOC samples using targeted RNA sequencing. We selected the best candidates using in silico survival and pathway analysis and validated the biomarkers using immunohistochemistry on a cohort of 44 paired samples, an additional cohort of 504 primary HGSOCs and explored their function. RESULTS: We identified 233 differential expressed genes. Twenty-three showed a significant prognostic value for PFS and OS in silico. Seven markers (AHRR, COL5A2, FABP4, HMGCS2, ITGA5, SFRP2 and WNT9B) were chosen for validation at the protein level. AHRR expression was higher in primary tumours (p < 0.0001) and correlated with better patient survival (p < 0.05). Stromal SFRP2 expression was higher in recurrent samples (p = 0.009) and protein expression in primary tumours was associated with worse patient survival (p = 0.022). In multivariate analysis, tumour AHRR and SFRP2 remained independent prognostic markers. In vitro studies supported the anti-tumorigenic role of AHRR and the oncogenic function of SFRP2. CONCLUSIONS: Our results underline the relevance of AHRR and SFRP2 proteins in aryl-hydrocarbon receptor and Wnt-signalling, respectively, and might lead to establishing them as biomarkers in HGSOC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Prognóstico , Neoplasias Ovarianas/patologia , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Cistadenocarcinoma Seroso/patologia , Proteínas de Membrana/genética , Proteínas Repressoras/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
4.
Int J Cancer ; 150(12): 2058-2071, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35262195

RESUMO

Lung carcinoid tumors, also referred to as pulmonary neuroendocrine tumors or lung carcinoids, are rare neoplasms of the lung with a more favorable prognosis than other subtypes of lung cancer. Still, some patients suffer from relapsed disease and metastatic spread. Several recent single-cell studies have provided detailed insights into the cellular heterogeneity of more common lung cancers, such as adeno- and squamous cell carcinoma. However, the characteristics of lung carcinoids on the single-cell level are yet completely unknown. To study the cellular composition and single-cell gene expression profiles in lung carcinoids, we applied single-cell RNA sequencing to three lung carcinoid tumor samples and normal lung tissue. The single-cell transcriptomes of carcinoid tumor cells reflected intertumoral heterogeneity associated with clinicopathological features, such as tumor necrosis and proliferation index. The immune microenvironment was specifically enriched in noninflammatory monocyte-derived myeloid cells. Tumor-associated endothelial cells were characterized by distinct gene expression profiles. A spectrum of vascular smooth muscle cells and pericytes predominated the stromal microenvironment. We found a small proportion of myofibroblasts exhibiting features reminiscent of cancer-associated fibroblasts. Stromal and immune cells exhibited potential paracrine interactions which may shape the microenvironment via NOTCH, VEGF, TGFß and JAK/STAT signaling. Moreover, single-cell gene signatures of pericytes and myofibroblasts demonstrated prognostic value in bulk gene expression data. Here, we provide first comprehensive insights into the cellular composition and single-cell gene expression profiles in lung carcinoids, demonstrating the noninflammatory and vessel-rich nature of their tumor microenvironment, and outlining relevant intercellular interactions which could serve as future therapeutic targets.


Assuntos
Tumor Carcinoide , Carcinoma Neuroendócrino , Neoplasias Pulmonares , Tumores Neuroendócrinos , Tumor Carcinoide/genética , Tumor Carcinoide/metabolismo , Tumor Carcinoide/patologia , Carcinoma Neuroendócrino/patologia , Células Endoteliais/metabolismo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Tumores Neuroendócrinos/patologia , Prognóstico , Microambiente Tumoral/genética
5.
J Hepatol ; 77(5): 1386-1398, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863491

RESUMO

BACKGROUND & AIMS: Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLC) have enormous potential as a replacement for primary hepatocytes in drug screening, toxicology and cell replacement therapy, but their genome-wide expression patterns differ strongly from primary human hepatocytes (PHH). METHODS: We differentiated human induced pluripotent stem cells (hiPSC) via definitive endoderm to HLC and characterized the cells by single-cell and bulk RNA-seq, with complementary epigenetic analyses. We then compared HLC to PHH and publicly available data on human fetal hepatocytes (FH) ex vivo; we performed bioinformatics-guided interventions to improve HLC differentiation via lentiviral transduction of the nuclear receptor FXR and agonist exposure. RESULTS: Single-cell RNA-seq revealed that transcriptomes of individual HLC display a hybrid state, where hepatocyte-associated genes are expressed in concert with genes that are not expressed in PHH - mostly intestinal genes - within the same cell. Bulk-level overrepresentation analysis, as well as regulon analysis at the single-cell level, identified sets of regulatory factors discriminating HLC, FH, and PHH, hinting at a central role for the nuclear receptor FXR in the functional maturation of HLC. Combined FXR expression plus agonist exposure enhanced the expression of hepatocyte-associated genes and increased the ability of bile canalicular secretion as well as lipid droplet formation, thereby increasing HLCs' similarity to PHH. The undesired non-liver gene expression was reproducibly decreased, although only by a moderate degree. CONCLUSION: In contrast to physiological hepatocyte precursor cells and mature hepatocytes, HLC co-express liver and hybrid genes in the same cell. Targeted modification of the FXR gene regulatory network improves their differentiation by suppressing intestinal traits whilst inducing hepatocyte features. LAY SUMMARY: Generation of human hepatocytes from stem cells represents an active research field but its success is hampered by the fact that the stem cell-derived 'hepatocytes' still show major differences to hepatocytes obtained from a liver. Here, we identified an important reason for the difference, specifically that the stem cell-derived 'hepatocyte' represents a hybrid cell with features of hepatocytes and intestinal cells. We show that a specific protein (FXR) suppresses intestinal and induces liver features, thus bringing the stem cell-derived cells closer to hepatocytes derived from human livers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Hepatócitos/metabolismo , Humanos , Intestinos
6.
BMC Biol ; 18(1): 116, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895052

RESUMO

BACKGROUND: Colorectal cancer (CRC) development is generally accepted as a sequential process, with genetic mutations determining phenotypic tumor progression. However, matching genetic profiles with histological transition requires the analyses of temporal samples from the same patient at key stages of progression. RESULTS: Here, we compared the genetic profiles of 34 early carcinomas with their respective adenomatous precursors to assess timing and heterogeneity of driver alterations accompanying the switch from benign adenoma to malignant carcinoma. In almost half of the cases, driver mutations specific to the carcinoma stage were not observed. In samples where carcinoma-specific alterations were present, TP53 mutations and chromosome 20 copy gains commonly accompanied the switch from adenomatous tissue to carcinoma. Remarkably, 40% and 50% of high-grade adenomas shared TP53 mutations and chromosome 20 gains, respectively, with their matched carcinomas. In addition, multi-regional analyses revealed greater heterogeneity of driver mutations in adenomas compared to their matched carcinomas. CONCLUSION: Genetic alterations in TP53 and chromosome 20 occur at the earliest histological stage in colorectal carcinomas (pTis and pT1). However, high-grade adenomas can share these alterations despite their histological distinction. Based on the well-defined sequence of CRC development, we suggest that the timing of genetic changes during neoplastic progression is frequently uncoupled from histological progression.


Assuntos
Adenoma/patologia , Carcinoma/patologia , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/patologia , Mutação , Adenoma/genética , Carcinoma/genética , Neoplasias Colorretais/genética , Progressão da Doença , Humanos
7.
Int J Cancer ; 144(3): 569-581, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252132

RESUMO

Expression of the epidermal growth factor ligands amphiregulin (AREG) and epiregulin (EREG) is positively correlated with a response to EGFR-targeted therapies in colorectal cancer. Gene-body methylation sites, which show a strong inverse correlation with AREG and EREG gene expression, were identified in cell lines using targeted 454 FLX-bisulfite sequencing and SIRPH analyses for AREG/EREG promoters and intragenic CpGs. Upon treatment of colorectal cancer cells with 5-aza-2'-desoxycytidine, methylation decreases at specific intragenic CpGs accompanied by upregulation of AREG and EREG gene expression. The same AREG gene-body methylation was also found in human colorectal cancer samples and is independent of KRAS and NRAS mutations. Methylation is specifically decreased in the tumor epithelial compartment as compared to stromal tissue and normal epithelium. Investigation of a promoter/enhancer function of the AREG exon 2 region revealed a potential promoter function in reverse orientation. Retrospective comparison of the predictive power of AREG gene-body methylation versus AREG gene expression using samples from colorectal cancer patients treated with anti-EGFR inhibitors with complete clinical follow-up revealed that AREG expression is superior to AREG gene methylation. AREG and EREG genes undergo a complex regulation involving both intragenic methylation and promoter-dependent control.


Assuntos
Anfirregulina/genética , Neoplasias Colorretais/genética , Epirregulina/genética , Anfirregulina/biossíntese , Células CACO-2 , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA , Epigênese Genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Células HCT116 , Humanos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Estudos Retrospectivos , Células Estromais/metabolismo , Células Estromais/patologia
8.
PLoS Genet ; 9(2): e1003250, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23408899

RESUMO

Aberrant CpG methylation is a universal epigenetic trait of cancer cell genomes. However, human cancer samples or cell lines preclude the investigation of epigenetic changes occurring early during tumour development. Here, we have used MeDIP-seq to analyse the DNA methylome of APC(Min) adenoma as a model for intestinal cancer initiation, and we present a list of more than 13,000 recurring differentially methylated regions (DMRs) characterizing intestinal adenoma of the mouse. We show that Polycomb Repressive Complex (PRC) targets are strongly enriched among hypermethylated DMRs, and several PRC2 components and DNA methyltransferases were up-regulated in adenoma. We further demonstrate by bisulfite pyrosequencing of purified cell populations that the DMR signature arises de novo in adenoma cells rather than by expansion of a pre-existing pattern in intestinal stem cells or undifferentiated crypt cells. We found that epigenetic silencing of tumour suppressors, which occurs frequently in colon cancer, was rare in adenoma. Quite strikingly, we identified a core set of DMRs, which is conserved between mouse adenoma and human colon cancer, thus possibly revealing a global panel of epigenetically modified genes for intestinal tumours. Our data allow a distinction between early conserved epigenetic alterations occurring in intestinal adenoma and late stochastic events promoting colon cancer progression, and may facilitate the selection of more specific clinical epigenetic biomarkers.


Assuntos
Adenoma/genética , Neoplasias do Colo/genética , Metilação de DNA/genética , Neoplasias Intestinais/genética , Proteínas do Grupo Polycomb/genética , Adenoma/patologia , Animais , Sequência de Bases , Ilhas de CpG/genética , Epigenômica , Genoma , Humanos , Neoplasias Intestinais/patologia , Camundongos , Sintenia
9.
Bioinformatics ; 30(2): 284-6, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24227674

RESUMO

MOTIVATION: DNA enrichment followed by sequencing is a versatile tool in molecular biology, with a wide variety of applications including genome-wide analysis of epigenetic marks and mechanisms. A common requirement of these diverse applications is a comparison of read coverage between experimental conditions. The amount of samples generated for such comparisons ranges from few replicates to hundreds of samples per condition for epigenome-wide association studies. Consequently, there is an urgent need for software that allows for fast and simple processing and comparison of sequencing data derived from enriched DNA. RESULTS: Here, we present a major update of the R/Bioconductor package MEDIPS, which allows for an arbitrary number of replicates per group and integrates sophisticated statistical methods for the detection of differential coverage between experimental conditions. Our approach can be applied to a diversity of quantitative sequencing data. In addition, our update adds novel functionality to MEDIPS, including correlation analysis between samples, and takes advantage of Bioconductor's annotation databases to facilitate annotation of specific genomic regions. AVAILABILITY AND IMPLEMENTATION: The latest version of MEDIPS is available as version 1.12.0 and part of Bioconductor 2.13. The package comes with a manual containing detailed description of its functionality and is available at http://www.bioconductor.org.


Assuntos
Metilação de DNA , Estudo de Associação Genômica Ampla , Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Adenoma/genética , Animais , Imunoprecipitação da Cromatina , Ilhas de CpG , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Factuais , Epigenômica , Neoplasias Intestinais/genética , Camundongos , Controle de Qualidade
10.
Cell Oncol (Dordr) ; 47(4): 1221-1231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38300468

RESUMO

PURPOSE: Single-cell transcriptional profiling reveals cell heterogeneity and clinically relevant traits in intra-operatively collected patient-derived tissue. So far, single-cell studies have been constrained by the requirement for prospectively collected fresh or cryopreserved tissue. This limitation might be overcome by recent technical developments enabling single-cell analysis of FFPE tissue. METHODS: We benchmark single-cell profiles from patient-matched fresh, cryopreserved and archival FFPE cancer tissue. RESULTS: We find that fresh tissue and FFPE routine blocks can be employed for the robust detection of clinically relevant traits on the single-cell level. Specifically, single-cell maps of fresh patient tissues and corresponding FFPE tissue blocks could be integrated into common low-dimensional representations, and cell subtype clusters showed highly correlated transcriptional strengths of signaling pathway, hallmark, and clinically useful signatures, although expression of single genes varied due to technological differences. FFPE tissue blocks revealed higher cell diversity compared to fresh tissue. In contrast, single-cell profiling of cryopreserved tissue was prone to artifacts in the clinical setting. CONCLUSION: Our analysis highlights the potential of single-cell profiling in the analysis of retrospectively and prospectively collected archival pathology cohorts and increases the applicability in translational research.


Assuntos
Formaldeído , Neoplasias Pulmonares , Inclusão em Parafina , Análise de Célula Única , Fixação de Tecidos , Humanos , Inclusão em Parafina/métodos , Análise de Célula Única/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fixação de Tecidos/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Regulação Neoplásica da Expressão Gênica , Criopreservação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA