Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Antimicrob Agents Chemother ; 68(3): e0112023, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289044

RESUMO

ANT3310 is a novel broad-spectrum diazabicyclooctane serine ß-lactamase inhibitor being developed in combination with meropenem (MEM) for the treatment of serious infections in hospitalized patients where carbapenem-resistant Gram-negative pathogens are expected. In this study, we evaluated the in vitro antibacterial activity of MEM in the presence of ANT3310 at 8 µg/mL against global clinical isolates that included Acinetobacter baumannii (n = 905), carbapenem-resistant Enterobacterales (CRE), carrying either oxacillinase (OXA) (n = 252) or Klebsiella pneumoniae carbapenemase (KPC) (n = 180) carbapenemases, and Pseudomonas aeruginosa (n = 502). MEM was poorly active against A. baumannii, as were MEM-vaborbactam, ceftazidime-avibactam, aztreonam-avibactam, cefepime-taniborbactam, cefepime-zidebactam, and imipenem-relebactam (MIC90 values of ≥32 µg/mL). On the other hand, MEM-ANT3310 displayed an MIC90 value of 4 µg/mL, similar to that observed with sulbactam-durlobactam, a drug developed to specifically treat A. baumannii infections. ANT3310 (8 µg/mL) additionally restored the activity of MEM against OXA- and KPC-producing CREs decreasing MEM MIC90 values from >32 µg/mL to 0.25 and 0.5 µg/mL, respectively. The combination of 8 µg/mL of both MEM and ANT3310 prevented growth of 97.5% of A. baumannii and 100% of OXA- and KPC-positive CREs, with ~90% of P. aeruginosa isolates also displaying MEM MICs ≤8 µg/mL. Furthermore, MEM-ANT3310 was efficacious in both thigh and lung murine infection models with OXA-23 A. baumannii. This study demonstrates the potent in vitro activity of the MEM-ANT3310 combination against both carbapenem-resistant A. baumannii and Enterobacterales clinical isolates, a key differentiator to other ß-lactam/ß-lactamase combinations.


Assuntos
Acinetobacter baumannii , Inibidores de beta-Lactamases , Humanos , Animais , Camundongos , Meropeném/farmacologia , Inibidores de beta-Lactamases/farmacologia , Lactamas , Antibacterianos/farmacologia , beta-Lactamases , Carbapenêmicos/farmacologia , Compostos Azabicíclicos/farmacologia , Combinação de Medicamentos , Testes de Sensibilidade Microbiana
2.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391360

RESUMO

AIMS: To survey antibiotic susceptibility of bacteria causing cattle and pig respiratory infections in 10 European countries. METHODS AND RESULTS: Non-replicate nasopharyngeal/nasal or lung swabs were collected from animals with acute respiratory signs during 2015-2016. Pasteurella multocida, Mannheimia haemolytica, Histophilus somni from cattle (n = 281), and P. multocida, Actinobacillus pleuropneumoniae, Glaesserella parasuis, Bordetella bronchiseptica, and Streptococcus suis from pigs (n = 593) were isolated. MICs were assessed following CLSI standards and interpreted using veterinary breakpoints where available. Histophilus somni isolates were fully antibiotic susceptible. Bovine P. multocida and M. haemolytica were susceptible to all antibiotics, except tetracycline (11.6%-17.6% resistance). Low macrolide and spectinomycin resistance was observed for P. multocida and M. haemolytica (1.3%-8.8%). Similar susceptibility was observed in pigs, where breakpoints are available. Resistance in P. multocida, A. pleuropneumoniae, and S. suis to ceftiofur, enrofloxacin, and florfenicol was absent or <5%. Tetracycline resistance varied from 10.6% to 21.3%, but was 82.4% in S. suis. Overall multidrug-resistance was low. Antibiotic resistance in 2015-2016 remained similar as in 2009-2012. CONCLUSIONS: Low antibiotic resistance was observed among respiratory tract pathogens, except for tetracycline.


Assuntos
Doenças dos Bovinos , Pasteurella multocida , Infecções Respiratórias , Bovinos , Animais , Suínos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/veterinária , Infecções Respiratórias/microbiologia , Tetraciclina , Sistema Respiratório , Testes de Sensibilidade Microbiana , Doenças dos Bovinos/microbiologia , Farmacorresistência Bacteriana
3.
Antimicrob Agents Chemother ; 65(8): e0092621, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34097479

RESUMO

The use of carbapenem antibiotics to treat infections caused by Enterobacterales expressing increasingly aggressive extended-spectrum ß-lactamases (ESBLs) has contributed to the emergence of carbapenem resistance. Enmetazobactam is a novel ESBL inhibitor being developed in combination with cefepime as a carbapenem-sparing option for infections caused by ESBL-producing Enterobacterales. Cefepime-enmetazobactam checkerboard MIC profiles were obtained for a challenge panel of cefepime-resistant ESBL-producing clinical isolates of Klebsiella pneumoniae. Sigmoid maximum effect (Emax) modeling described cefepime MICs as a function of enmetazobactam concentration with no bias. A concentration of 8 µg/ml enmetazobactam proved sufficient to restore >95% of cefepime antibacterial activity in vitro against >95% of isolates tested. These results support a fixed concentration of 8 µg/ml of enmetazobactam for MIC testing.


Assuntos
Cefalosporinas , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Cefepima , Cefalosporinas/farmacologia , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Triazóis , beta-Lactamases/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-33820763

RESUMO

The global dissemination of metallo-ß-lactamase (MBL)-producing carbapenem-resistant Enterobacterales (CRE) is a serious public health concern. Specifically, NDM (New Delhi MBL) has been a major cause of carbapenem therapy failures in recent years, particularly as effective treatments for serine-ß-lactamase (SBL)-producing Enterobacterales are now commercially available. Since the NDM gene is carried on promiscuous plasmids encoding multiple additional resistance determinants, a large proportion of NDM-CREs are also resistant to many commonly used antibiotics, resulting in limited and suboptimal treatment options. ANT2681 is a specific, competitive inhibitor of MBLs with potent activity against NDM enzymes, progressing to clinical development in combination with meropenem (MEM). Susceptibility studies have been performed with MEM-ANT2681 against 1,687 MBL-positive Enterobacterales, including 1,108 NDM-CRE. The addition of ANT2681 at 8 µg/ml reduced the MEM MIC50/MIC90 from >32/>32 µg/ml to 0.25/8 µg/ml. Moreover, the combination of 8 µg/ml of both MEM and ANT2681 inhibited 74.9% of the Verona integron-encoded MBL (VIM)-positive and 85.7% of the imipenem hydrolyzing ß-lactamase (IMP)-positive Enterobacterales tested. The antibacterial activity of MEM-ANT2681 against NDM-CRE compared very favorably to that of cefiderocol (FDC) and cefepime (FEP)-taniborbactam, which displayed MIC90 values of 8 µg/ml and 32 µg/ml, respectively, whereas aztreonam-avibactam (ATM-AVI) had a MIC90 of 0.5 µg/ml. Particularly striking was the activity of MEM-ANT2681 against NDM-positive Escherichia coli (MIC90 1 µg/ml), in contrast to ATM-AVI (MIC90 4 µg/ml), FDC (MIC90 >32 µg/ml), and FEP-taniborbactam (MIC90 >32 µg/ml), which were less effective due to the high incidence of resistant PBP3-insertion mutants. MEM-ANT2681 offers a potential new therapeutic option to treat serious infections caused by NDM-CRE.


Assuntos
Ácidos Borínicos , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Ácidos Carboxílicos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-31843997

RESUMO

Eravacycline is a novel, fully synthetic fluorocycline antibiotic being developed for the treatment of serious infections, including those caused by resistant Gram-positive pathogens. Here, we evaluated the in vitro activities of eravacycline and comparator antimicrobial agents against a recent global collection of frequently encountered clinical isolates of Gram-positive bacteria. The CLSI broth microdilution method was used to determine in vitro MIC data for isolates of Enterococcus spp. (n = 2,807), Staphylococcus spp. (n = 4,331), and Streptococcus spp. (n = 3,373) isolated primarily from respiratory, intra-abdominal, urinary, and skin specimens by clinical laboratories in 37 countries on three continents from 2013 to 2017. Susceptibilities were interpreted using both CLSI and EUCAST breakpoints. There were no substantive differences (a >1-doubling-dilution increase or decrease) in eravacycline MIC90 values for different species/organism groups over time or by region. Eravacycline showed MIC50 and MIC90 results of 0.06 and 0.12 µg/ml, respectively, when tested against Staphylococcus aureus, regardless of methicillin susceptibility. The MIC90 values of eravacycline for Staphylococcus epidermidis and Staphylococcus haemolyticus were equal (0.5 µg/ml). The eravacycline MIC90s for Enterococcus faecalis and Enterococcus faecium were 0.06 µg/ml and were within 1 doubling dilution regardless of the vancomycin susceptibility profile. Eravacycline exhibited MIC90 results of ≤0.06 µg/ml when tested against Streptococcus pneumoniae and beta-hemolytic and viridans group streptococcal isolates. In this surveillance study, eravacycline demonstrated potent in vitro activity against frequently isolated clinical isolates of Gram-positive bacteria (Enterococcus, Staphylococcus, and Streptococcus spp.), including isolates collected over a 5-year period (2013 to 2017), underscoring its potential benefit in the treatment of infections caused by common Gram-positive pathogens.


Assuntos
Bactérias Gram-Positivas/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Tetraciclinas/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Vancomicina/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-31843999

RESUMO

Eravacycline is a novel, fully synthetic fluorocycline antibiotic developed for the treatment of serious infections, including those caused by multidrug-resistant (MDR) pathogens. Here, we evaluated the in vitro activities of eravacycline and comparator antimicrobial agents against a global collection of frequently encountered clinical isolates of Gram-negative bacilli. The CLSI broth microdilution method was used to determine MIC data for isolates of Enterobacterales (n = 13,983), Acinetobacter baumannii (n = 2,097), Pseudomonas aeruginosa (n = 1,647), and Stenotrophomonas maltophilia (n = 1,210) isolated primarily from respiratory, intra-abdominal, and urinary specimens by clinical laboratories in 36 countries from 2013 to 2017. Susceptibilities were interpreted using both CLSI and EUCAST breakpoints. Multidrug-resistant (MDR) isolates were defined by resistance to agents from ≥3 different antimicrobial classes. The MIC90s ranged from 0.25 to 1 µg/ml for Enterobacteriaceae and were 1 µg/ml for A. baumannii and 2 µg/ml for S. maltophilia, Proteus mirabilis, and Serratia marcescens Eravacycline's potency was up to 4-fold greater than that of tigecycline against genera/species of Enterobacterales, A. baumannii, and S. maltophilia The MIC90s for five of six individual genera/species of Enterobacterales and A. baumannii were within 2-fold of the MIC90s for their respective subsets of MDR isolates, while the MDR subpopulation of Klebsiella spp. demonstrated 4-fold higher MIC90s. Eravacycline demonstrated potent in vitro activity against the majority of clinical isolates of Gram-negative bacilli, including MDR isolates, collected over a 5-year period. This study further underscores the potential benefit of eravacycline in the treatment of infections caused by MDR Gram-negative pathogens.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Tetraciclinas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Tigeciclina/farmacologia
7.
Vet Dermatol ; 31(6): 431-e114, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32924232

RESUMO

BACKGROUND: The ComPath project is a pan-European programme dedicated to the monitoring of antimicrobial susceptibility of canine and feline pathogens using standardized methods and centralized minimal inhibitory concentration (MIC) determination. OBJECTIVES: To report antimicrobial susceptibilities of major pathogens isolated from nontreated animals with acute clinical signs of skin, wound or ear infections in 2013-2014. METHODS AND MATERIALS: MICs were determined by agar dilution for commonly used drugs and interpreted using Clinical and Laboratory Standards Institute (CLSI) breakpoints, if available. RESULTS: Of 1,676 isolates recovered, the main species isolated from dogs were Staphylococcus pseudintermedius, followed by Streptococcus spp., Pseudomonas aeruginosa and Escherichia coli. In cats, Pasteurella multocida, coagulase-negative staphylococci (CoNS) and Staphylococcus aureus were isolated most frequently. Resistance rates observed for S. pseudintermedius were <26.7% for penicillin, clindamycin and chloramphenicol, and ≤11.5% for ampicillin, amoxicillin/clavulanate, cefalexin, cefovecin, gentamicin and fluoroquinolones. For S. aureus, resistance rates ranged up to 90.9% for ß-lactams, and were 19.7% for clindamycin, 27% for fluoroquinolones and 0.0-6.1% for other drugs. The mecA gene was confirmed by PCR in 10.6% of S. pseudintermedius, 11.6% of CoNS and 31.4% of S. aureus isolates. In streptococci/enterococci, resistance to penicillin, ampicillin and chloramphenicol ranged from 0.0% to 11.3%, whereas fluoroquinolone resistance ranged from 0.0% to 8.5%. For E. coli, resistance ranged from 13.8 to 15.9% for fluoroquinolones and from 86.2% to 100.0% for ß-lactams. Low rates of resistance (0.0-6.3%) were observed in P. multocida, and for P. aeruginosa resistance to gentamicin was 10.3%. CONCLUSION: Overall, antimicrobial resistance of cutaneous/otic pathogens isolated from dogs and cats was low (1-10%) to moderate (10-20%). For several pathogens, the paucity of CLSI recommended breakpoints for veterinary use is a bottleneck.


Assuntos
Anti-Infecciosos , Doenças do Gato , Doenças do Cão , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Gatos , Cães , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Hospitais Veterinários , Testes de Sensibilidade Microbiana/veterinária , Staphylococcus , Staphylococcus aureus/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-30988152

RESUMO

Enmetazobactam, formerly AAI101, is a novel penicillanic acid sulfone extended-spectrum ß-lactamase (ESBL) inhibitor. The combination of enmetazobactam with cefepime has entered clinical trials to assess safety and efficacy in patients with complicated urinary tract infections. Here, the in vitro activity of cefepime-enmetazobactam was determined for 1,993 clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa collected in the United States and Europe during 2014 and 2015. Enmetazobactam at a fixed concentration of 8 µg/ml lowered the cefepime MIC90 from 16 to 0.12 µg/ml for Escherichia coli, from >64 to 0.5 µg/ml for Klebsiella pneumoniae, from 16 to 1 µg/ml for Enterobacter cloacae, and from 0.5 to 0.25 µg/ml for Enterobacter aerogenes Enmetazobactam did not enhance the potency of cefepime against P. aeruginosa Applying the Clinical and Laboratory Standards Institute susceptible-dose-dependent (SDD) breakpoint of 8 µg/ml to cefepime-enmetazobactam for comparative purposes resulted in cumulative inhibitions of 99.9% for E. coli, 96.4% for K. pneumoniae, 97.0% for E. cloacae, 100% for E. aerogenes, 98.1% for all Enterobacteriaceae assessed, and 82.8% for P. aeruginosa Comparator susceptibilities for all Enterobacteriaceae were 99.7% for ceftazidime-avibactam, 96.2% for meropenem, 90.7% for ceftolozane-tazobactam, 87% for cefepime (SDD breakpoint), 85.7% for piperacillin-tazobactam, and 81.2% for ceftazidime. For the subset of ESBL-producing K. pneumoniae isolates, the addition of 8 µg/ml enmetazobactam to cefepime lowered the MIC90 from >64 to 1 µg/ml, whereas the shift for 8 µg/ml tazobactam was from >64 to 8 µg/ml. Cefepime-enmetazobactam may represent a novel carbapenem-sparing option for empirical treatment of serious Gram-negative infections in settings where ESBL-producing Enterobacteriaceae are expected.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Cefepima/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Triazóis/farmacologia , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Infecção Hospitalar/microbiologia , Combinação de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Europa (Continente) , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/microbiologia , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Tazobactam/farmacologia , Estados Unidos
9.
Artigo em Inglês | MEDLINE | ID: mdl-29530861

RESUMO

Infections caused by carbapenem-resistant Enterobacteriaceae (CRE) are increasingly prevalent and have become a major worldwide threat to human health. Carbapenem resistance is driven primarily by the acquisition of ß-lactamase enzymes, which are able to degrade carbapenem antibiotics (hence termed carbapenemases) and result in high levels of resistance and treatment failure. Clinically relevant carbapenemases include both serine ß-lactamases (SBLs; e.g., KPC-2 and OXA-48) and metallo-ß-lactamases (MBLs), such as NDM-1. MBL-producing strains are endemic within the community in many Asian countries, have successfully spread worldwide, and account for many significant CRE outbreaks. Recently approved combinations of ß-lactam antibiotics with ß-lactamase inhibitors are active only against SBL-producing pathogens. Therefore, new drugs that specifically target MBLs and which restore carbapenem efficacy against MBL-producing CRE pathogens are urgently needed. Here we report the discovery of a novel MBL inhibitor, ANT431, that can potentiate the activity of meropenem (MEM) against a broad range of MBL-producing CRE and restore its efficacy against an Escherichia coli NDM-1-producing strain in a murine thigh infection model. This is a strong starting point for a chemistry lead optimization program that could deliver a first-in-class MBL inhibitor-carbapenem combination. This would complement the existing weaponry against CRE and address an important and growing unmet medical need.


Assuntos
Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
10.
Eur J Clin Microbiol Infect Dis ; 37(4): 673-678, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29222698

RESUMO

The objective of this study was to demonstrate the efficacy of iclaprim in a neutropenic rat lung infection model with methicillin-resistant Staphylococcus aureus (MRSA) entrapped in alginate beads. An inoculum of 5.25 × 105 colony-forming units (CFU)/mL of S. aureus strain AH1252 was administered intratracheally to rats with prepared alginate bacteria suspensions. Beginning 2 h post-infection, rats received: (1) iclaprim 80 mg/kg (n = 16); (2) iclaprim 60 mg/kg (n = 16), or (3) vancomycin 50 mg/kg (n = 24), for 3 days via subcutaneous (SC) injection every 12 h. Twelve hours after the last treatment, rats were euthanized and lungs collected for CFU determination. Iclaprim administered at 80 mg/kg or 60 mg/kg or vancomycin 50 mg/kg SC twice a day for 3 days resulted in a 6.05 log10 CFU reduction (iclaprim 80 mg/kg compared with control, p < 0.0001), 5.11 log10 CFU reduction (iclaprim 60 mg/kg compared with control, p < 0.0001), and 3.42 log10 CFU reduction, respectively, from the controls (p < 0.0001). Iclaprim 80 mg/kg and 60 mg/kg resulted in 2.59 and 1.69 log10 CFU reductions, respectively, from vancomycin-treated animals (80 mg/kg iclaprim vs. vancomycin, p = 0.0005; 60 mg/kg iclaprim vs. vancomycin, p = 0.07). Animals receiving iclaprim, vancomycin, and controls demonstrated 100%, 91.7%, and 48.3% survival, respectively. In this neutropenic rat S. aureus lung infection model, rats receiving iclaprim demonstrated a greater CFU reduction than the controls or those receiving vancomycin.


Assuntos
Alginatos/administração & dosagem , Antibacterianos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pneumonia Estafilocócica/tratamento farmacológico , Pirimidinas/administração & dosagem , Alginatos/química , Alginatos/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Portadores de Fármacos/química , Ácido Glucurônico/administração & dosagem , Ácido Glucurônico/química , Ácido Glucurônico/uso terapêutico , Ácidos Hexurônicos/administração & dosagem , Ácidos Hexurônicos/química , Ácidos Hexurônicos/uso terapêutico , Masculino , Microesferas , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
11.
Water Environ Res ; 88(11): 1985-1993, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26754427

RESUMO

Advanced oxidation of active pharmaceutical ingredients (APIs) in wastewater produces transformation products (TPs) that are often more biodegradable than the parent compounds. Secondary effluent from a wastewater treatment plant was treated using UV-based advanced oxidation (LPUV/H2O2 and MPUV/NO3) followed by biological aerated filtration (BAF), and different APIs and their transformation products were monitored. The advanced oxidation processes degraded the APIs by 55-87% (LPUV/H2O2) and 58-95% (MPUV/NO3), while minor loss of APIs was achieved in the downstream BAF system. Eleven TPs were detected following oxidation of carbamazepine (5) and iopromide (6); three key TPs were biodegraded in the BAF system. The other TPs remained relatively constant in the BAF. The decrease in UV absorbance (UVA254) of the effluent in the BAF system was linearly correlated to the degradation of the APIs (for the MPUV/NO3-BAF), and can be applied to monitor the biotransformation of APIs in biological-based systems.


Assuntos
Reatores Biológicos , Filtração/métodos , Preparações Farmacêuticas/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Oxirredução , Preparações Farmacêuticas/metabolismo , Projetos Piloto , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
12.
BMC Genomics ; 16: 345, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25924916

RESUMO

BACKGROUND: The enoyl-acyl carrier protein (ACP) reductase enzyme (FabI) is the target for a series of antimicrobial agents including novel compounds in clinical trial and the biocide triclosan. Mutations in fabI and heterodiploidy for fabI have been shown to confer resistance in S. aureus strains in a previous study. Here we further determined the fabI upstream sequence of a selection of these strains and the gene expression levels in strains with promoter region mutations. RESULTS: Mutations in the fabI promoter were found in 18% of triclosan resistant clinical isolates, regardless the previously identified molecular mechanism conferring resistance. Although not significant, a higher rate of promoter mutations were found in strains without previously described mechanisms of resistance. Some of the mutations identified in the clinical isolates were also detected in a series of laboratory mutants. Microarray analysis of selected laboratory mutants with fabI promoter region mutations, grown in the absence of triclosan, revealed increased fabI expression in three out of four tested strains. In two of these strains, only few genes other than fabI were upregulated. Consistently with these data, whole genome sequencing of in vitro selected mutants identified only few mutations except the upstream and coding regions of fabI, with the promoter mutation as the most probable cause of fabI overexpression. Importantly the gene expression profiling of clinical isolates containing similar mutations in the fabI promoter also showed, when compared to unrelated non-mutated isolates, a significant up-regulation of fabI. CONCLUSIONS: In conclusion, we have demonstrated the presence of C34T, T109G, and A101C mutations in the fabI promoter region of strains with fabI up-regulation, both in clinical isolates and/or laboratory mutants. These data provide further observations linking mutations upstream fabI with up-regulated expression of the fabI gene.


Assuntos
Anti-Infecciosos Locais/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Staphylococcus aureus/efeitos dos fármacos , Triclosan/farmacologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação para Baixo/efeitos dos fármacos , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Genótipo , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Regulação para Cima/efeitos dos fármacos
13.
Microbiol Spectr ; : e0418123, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904361

RESUMO

Carbapenem-resistant Enterobacterales represent a major health threat and have few approved therapeutic options. Enterobacterales isolates were collected from hospitalized inpatients from 49 sites in six European countries (1 January-31 December 2020) and underwent susceptibility testing to cefiderocol and ß-lactam/ß-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L) and cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-|resistant isolates by whole-genome sequencing, to identify resistance mechanisms. Overall, 1,909 isolates (including 970 Klebsiella spp., 382 Escherichia coli, and 244 Enterobacter spp.) were collected, commonly from bloodstream infections (43.6%). Cefiderocol susceptibility was higher than approved ß-lactam/ß-lactamase inhibitor combinations and largely comparable to cefepime-taniborbactam and aztreonam-avibactam against all Enterobacterales (98.1% vs 78.1%-|97.4% and 98.7%-99.1%, respectively) and Enterobacterales resistant to meropenem (n = 148, including 125 Klebsiella spp.; 87.8% vs 0%-71.6% and 93.2%-98.6%, respectively), ß-lactam/ß-lactamase inhibitor combinations (66.7%-|92.1% vs 0%-|88.1% and 66.7%-97.9%, respectively), and to both meropenem and ß-|lactam/ß-lactamase inhibitor combinations (61.9%-65.9% vs 0%-|20.5% and 76.2%-97.7%, respectively). Susceptibilities to approved and developmental ß-lactam/ß-lactamase inhibitor combinations against cefiderocol-resistant Enterobacterales (n = 37) were 10.8%-|56.8% and 78.4%-94.6%, respectively. Most meropenem-resistant Enterobacterales harbored Klebsiella pneumoniae carbapenemase (110/148) genes, although metallo-ß-lactamase (35/148) and oxacillinase (OXA) carbapenemase (6/148) genes were less common; cefiderocol susceptibility was retained in ß-lactamase producers, other than NDM, AmpC, and non-carbapenemase OXA producers. Most cefiderocol-resistant Enterobacterales had multiple resistance mechanisms, including ≥1 iron uptake-related mutation (37/37), carbapenemase gene (33/37), and ftsI mutation (24/37). The susceptibility to cefiderocol was higher than approved ß-lac|tam/ß-lactamase inhibitor combinations against European Enterobacterales, including meropenem- and ß-lactam/ß-lactamase inhibitor combination-resistant isolates. IMPORTANCE: This study collected a notably large number of Enterobacterales isolates from Europe, including meropenem- and ß-lactam/ß-lactamase inhibitor combination-resistant isolates against which the in vitro activities of cefiderocol and developmental ß-lactam/ß-lactamase inhibitor combinations were directly compared for the first time. The MIC breakpoint for high-dose meropenem was used to define meropenem resistance, so isolates that would remain meropenem resistant with doses clinically available to patients were included in the data. Susceptibility to cefiderocol, as a single active compound, was high against Enterobacterales and was higher than or comparable to available ß-lactam/ß-lactamase inhibitor combinations. These results provide insights into the treatment options for infections due to Enterobacterales with resistant phenotypes. Early susceptibility testing of cefiderocol in parallel with ß-lactam/ß-lactamase inhibitor combinations will allow patients to receive the most appropriate treatment option(s) available in a timely manner. This is particularly important when options are more limited, such as against metallo-ß-lactamase-producing Enterobacterales.

14.
J Glob Antimicrob Resist ; 38: 71-82, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723712

RESUMO

OBJECTIVES: This study was performed to investigate the activity of the novel ß-lactam/ß-lactamase inhibitor combination cefepime/enmetazobactam, against recently circulating Enterobacterales isolates from Europe from 2019 to 2021. METHODS: A total of 2627 isolates were collected, and antimicrobial susceptibility was determined according to the European Committee on Antimicrobial Susceptibility Testing guidelines. Isolates with phenotypic resistance to ceftriaxone and ceftazidime (but susceptible to meropenem) and isolates nonsusceptible to meropenem were screened for the presence of ß-lactamases. RESULTS: Overall, susceptibility to third-generation cephalosporins was 77%, and 97.3% were susceptible to meropenem. Cefepime/enmetazobactam susceptibility was 97.9% (72% of these isolates were Klebsiella pneumoniae from Italy), compared with 80.0% susceptibility to piperacillin/tazobactam and 99.4% to ceftazidime/avibactam. A total of 320 isolates (12.2%) were resistant to third-generation cephalosporins but susceptible to meropenem, and virtually all (96.3%) carried an extended-spectrum ß-lactamase with or without an AmpC and these were all susceptible to cefepime/enmetazobactam. Most meropenem-nonsusceptible isolates carried a KPC (68%), which were not inhibited by cefepime/enmetazobactam but were inhibited by ceftazidime/avibactam. Additionally, most meropenem-nonsusceptible isolates carrying OXA-48 (9/12 isolates) were susceptible to cefepime/enmetazobactam. CONCLUSIONS: Cefepime/enmetazobactam was highly active against Enterobacterales isolates, especially those resistant to third-generation cephalosporins. These data suggest that cefepime/enmetazobactam could be used as a carbapenem-sparing agent to replace piperacillin/tazobactam.

15.
Microbiol Spectr ; 12(4): e0383623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38483164

RESUMO

Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. represent major threats and have few approved therapeutic options. Non-|fermenting Gram-negative isolates were collected from hospitalized inpatients from 49 sites in 6 European countries between 01 January 2020 and 31 December 2020 and underwent susceptibility testing against cefiderocol and ß-lactam/ß-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L), cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-resistant isolates were analyzed by whole-genome sequencing to identify resistance mechanisms. Overall, 1,451 (950 P. aeruginosa; 501 Acinetobacter spp.) isolates were collected, commonly from the respiratory tract (42.0% and 39.3%, respectively). Cefiderocol susceptibility was higher than |ß|-|l|a|c|t|a|m|/|ß|-|l|a|c|t|a|mase| inhibitor combinations against P. aeruginosa (98.9% vs 83.3%-91.4%), and P. |aeruginosa resistant to meropenem (n = 139; 97.8% vs 12.2%-59.7%), ß-lactam/ß-lactamase inhibitor combinations (93.6%-98.1% vs 10.7%-71.8%), and both meropenem and ceftazidime-avibactam (96.7% vs 5.0%-||45.0%) or |ceftolozane-tazobactam (98.4% vs 8.1%-54.8%), respectively. Cefiderocol and sulbactam-durlobactam susceptibilities were high against Acinetobacter spp. (92.4% and 97.0%) and meropenem-resistant Acineto|bacter |spp. (n = 227; 85.0% and 93.8%) but lower against sulbactam-durlobactam- (n |= 15; 13.3%) and cefiderocol- (n = 38; 65.8%) resistant isolates, respectively. Among meropenem-resistant P. aeruginosa and Acinetobacter spp., the most common ß-||lactamase genes were metallo-ß-lactamases [30/139; blaVIM-2 (15/139)] and oxacillinases [215/227; blaOXA-23 (194/227)], respectively. Acquired ß-lactamase genes were identified in 1/10 and 32/38 of cefiderocol-resistant P. aeruginosa and Acinetobacter spp., and pirA-like or piuA mutations in 10/10 and 37/38, respectively. Conclusion: cefiderocol susceptibility was high against P. aeruginosa and Acinetobacter spp., including meropenem-resistant isolates and those resistant to recent ß-lactam/ß-lactamase inhibitor combinations common in first-line treatment of European non-fermenters. IMPORTANCE: This was the first study in which the in vitro activity of cefiderocol and non-licensed ß-lactam/ß-lactamase inhibitor combinations were directly compared against Pseudomonas aeruginosa and Acinetobacter spp., including meropenem- and ß-lactam/ß-lactamase inhibitor combination-resistant isolates. A notably large number of European isolates were collected. Meropenem resistance was defined according to the MIC breakpoint for high-dose meropenem, ensuring that data reflect antibiotic activity against isolates that would remain meropenem resistant in the clinic. Cefiderocol susceptibility was high against non-fermenters, and there was no apparent cross resistance between cefiderocol and ß-lactam/ß-lactamase inhibitor combinations, with the exception of sulbactam-durlobactam. These results provide insights into therapeutic options for infections due to resistant P. aeruginosa and Acinetobacter spp. and indicate how early susceptibility testing of cefiderocol in parallel with ß-lactam/ß-lactamase inhibitor combinations will allow clinicians to choose the effective treatment(s) from all available options. This is particularly important as current treatment options against non-fermenters are limited.


Assuntos
Acinetobacter , Infecções por Pseudomonas , Humanos , Meropeném/farmacologia , Cefiderocol , Inibidores de beta-Lactamases/farmacologia , Pseudomonas aeruginosa , Lactamas/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
16.
Antimicrob Agents Chemother ; 57(8): 3488-97, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23669380

RESUMO

The MICs and minimum bactericidal concentrations (MBCs) for the biocides benzalkonium chloride and chlorhexidine were determined against 1,602 clinical isolates of Staphylococcus aureus. Both compounds showed unimodal MIC and MBC distributions (2 and 4 or 8 mg/liter, respectively) with no apparent subpopulation with reduced susceptibility. To investigate further, all isolates were screened for qac genes, and 39 of these also had the promoter region of the NorA multidrug-resistant (MDR) efflux pump sequenced. The presence of qacA, qacB, qacC, and qacG genes increased the mode MIC, but not MBC, to benzalkonium chloride, while only qacA and qacB increased the chlorhexidine mode MIC. Isolates with a wild-type norA promoter or mutations in the norA promoter had similar biocide MIC distributions; notably, not all clinical isolates with norA mutations were resistant to fluoroquinolones. In vitro efflux mutants could be readily selected with ethidium bromide and acriflavine. Multiple passages were necessary to select mutants with biocides, but these mutants showed phenotypes comparable to those of mutants selected by dyes. All mutants showed changes in the promoter region of norA, but these were distinct from this region of the clinical isolates. Still, none of the in vitro mutants displayed fitness defects in a killing assay in Galleria mellonella larvae. In conclusion, our data provide an in-depth comparative overview on efflux in S. aureus mutants and clinical isolates, showing also that plasmid-encoded efflux pumps did not affect bactericidal activity of biocides. In addition, current in vitro tests appear not to be suitable for predicting levels of resistance that are clinically relevant.


Assuntos
Antibacterianos/farmacologia , Clorexidina/farmacologia , Farmacorresistência Bacteriana , Compostos de Amônio Quaternário/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Compostos de Benzalcônio/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Mariposas/microbiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Mutação , Fenótipo , Regiões Promotoras Genéticas , Inoculações Seriadas , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
17.
J Antimicrob Chemother ; 68(1): 164-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22941898

RESUMO

OBJECTIVES: To determine the activity of oritavancin against methicillin-resistant staphylococci, vancomycin-resistant enterococci (VRE) and ß-haemolytic streptococci recently isolated from acute bacterial skin and skin structure infections or bacteraemia in western Europe. METHODS: Forty-one centres in Spain (8), Italy (9), Germany (8), France (8) and the UK (8) submitted 866 isolates [204 methicillin-resistant Staphylococcus aureus (MRSA), 177 methicillin-resistant coagulase-negative staphylococci (MRCoNS), 101 VRE, 193 Streptococcus agalactiae and 191 Streptococcus pyogenes] that were collected during the first 6 months of 2011. These were re-identified and susceptibilities to oritavancin and comparators were determined. RESULTS: Oritavancin was very active against MRSA (MIC(50)/MIC(90) 0.03/0.06 mg/L), MRCoNS (0.06/0.12 mg/L), VRE (0.03/0.06 mg/L), S. agalactiae (0.03/0.06 mg/L) and S. pyogenes (0.06/0.25 mg/L). The highest oritavancin MIC observed was 0.25 mg/L (species were S. aureus, Staphylococcus epidermidis, Staphylococcus hominis, S. agalactiae, S. pyogenes and Enterococcus faecalis). CONCLUSIONS: These data from recently collected Gram-positive bacteria in western Europe confirm the potent in vitro activity of oritavancin against a wide range of resistant MRSA, MRCoNS and VRE isolates, including ones resistant to newer agents.


Assuntos
Enterococcus/efeitos dos fármacos , Glicopeptídeos/farmacologia , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Resistência a Vancomicina/efeitos dos fármacos , Antibacterianos/farmacologia , Enterococcus/crescimento & desenvolvimento , Europa (Continente)/epidemiologia , Humanos , Lipoglicopeptídeos , Resistência a Meticilina/fisiologia , Testes de Sensibilidade Microbiana/métodos , Staphylococcus/crescimento & desenvolvimento , Streptococcus/crescimento & desenvolvimento , Vancomicina/farmacologia , Resistência a Vancomicina/fisiologia
18.
J Glob Antimicrob Resist ; 33: 304-320, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37207925

RESUMO

OBJECTIVES: To evaluate eravacycline (ERV) activity against Gram-negative and Gram-positive bacteria collected between 2017 and 2020 from worldwide locations. METHODS: MIC determinations were performed using Clinical and Laboratory Standards Institute (CLSI) broth microdilution methodology. ERV and tigecycline susceptibility was interpreted using United States Food and Drug Administration (FDA) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints. Comparator susceptibility was interpreted using CLSI and EUCAST breakpoints. RESULTS: ERV MIC90 was 0.5 µg/mL against 12 436 Enterobacteriaceae isolates, which only increased to 1 µg/mL against multidrug-resistant (MDR) isolates (n = 2931) (23.6%). Similar activity was shown against 1893 Acinetobacter baumannii (MIC90 1 µg/mL) and 356 Stenotrophomonas maltophilia (MIC90 2 µg/mL). ERV was more active against Gram-positive bacteria: 415 Streptococcus pneumoniae (MIC90 0.008 µg/mL), 273 S. anginosus group (MIC90 0.015 µg/mL), 1876 Enterococcus faecalis and 1724 E. faecium (MIC90 2 µg/mL), 2158 Staphylococcus aureus and 575 S. saprophyticus (MIC90 0.12 µg/mL), 1143 S. epidermidis and 423 S. haemolyticus (MIC90 0.25 µg/mL). ERV MIC90 against methicillin-resistant staphylococci and vancomycin-resistant enterococci was similar to susceptible strains. However, ERV susceptibility varied between EUCAST or FDA against staphylococci, especially S. epidermidis (91.5% vs. 47.2%), and vancomycin-resistant E. faecalis (98.3% vs. 76.5%). CONCLUSION: This study reaffirms ERV's consistent broad-spectrum activity, which has been evaluated since 2003. ERV remains a key agent for the treatment of bacterial infections, including resistant isolates, but urgent reassessment of clinical breakpoints is required for staphylococci and enterococci.


Assuntos
Antibacterianos , Tetraciclinas , Humanos , Antibacterianos/farmacologia , Tetraciclinas/farmacologia , Tigeciclina , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
19.
Future Microbiol ; 18: 87-91, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511165

RESUMO

WHAT IS THIS SUMMARY ABOUT?: Molds are types of fungus that can cause sickness and death. Mold infections are increasing in China. Until 2022, medicines that can effectively treat all mold infections were still lacking in China. This summary of a study originally published in the journal Infection and Drug Resistance. The study took place in China and tested a medicine called isavuconazole on mold samples to check if isavuconazole can be used to treat mold infections. Isavuconazole became available in China in January 2022 as a capsule (a hard gel-covered pill filled with a dose of medicine) and in June 2022 as an injection or a shot. WHAT WERE THE RESULTS?: Isavuconazole stopped the growth of most molds. Other medicines were needed at higher amounts to stop the growth of molds. WHAT DO THE RESULTS OF THE STUDY MEAN?: Isavuconazole is another option to treat mold infections in China.


Assuntos
Aspergilose , Mucormicose , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Mucormicose/tratamento farmacológico , Fungos , Nitrilas/farmacologia , Nitrilas/uso terapêutico , China
20.
J Antimicrob Chemother ; 67(6): 1408-12, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22357801

RESUMO

OBJECTIVES: To determine the activity of ceftaroline (the active metabolite of the prodrug ceftaroline fosamil), a new cephalosporin recently approved in the USA for the treatment of community-acquired bacterial pneumonia, against serotyped Streptococcus pneumoniae causing community-acquired bacterial pneumonia from Europe and South Africa. METHODS: During 2007-08, 74 centres submitted 857 isolates of S. pneumoniae from patients with community-acquired bacterial pneumonia. These were re-identified and serotyped. MICs of ceftaroline and 12 comparators were determined by CLSI broth microdilution at a central laboratory. RESULTS: Ceftaroline was very active against all 857 S. pneumoniae isolates (MIC(90) 0.12 mg/L). The MIC(50) for South African isolates was 0.06 mg/L compared with 0.004 or 0.008 mg/L for isolates from elsewhere. Antibiotic resistance was also higher in South Africa than other countries. Serotypes 3, 1, 7 and 11 were more susceptible to ceftaroline (MIC(90) = 0.008 mg/L) and the reference antibiotics than the population as a whole. Ceftaroline showed a biphasic MIC distribution (associated with cefuroxime susceptibility), the extent of which differed between isolate populations. Nevertheless, the highest ceftaroline MIC observed was only 0.5 mg/L (two isolates: one from the UK and one from South Africa). CONCLUSIONS: These data from a large collection of S. pneumoniae isolates during 2007-08 from Europe and South Africa with varying serotype and antibiotic susceptibility, confirm the excellent in vitro activity of ceftaroline against S. pneumoniae causing community-acquired bacterial pneumonia in both adults and children.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Infecções Comunitárias Adquiridas/microbiologia , Pneumonia Pneumocócica/microbiologia , Streptococcus pneumoniae/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Europa (Continente) , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Sorotipagem , África do Sul , Streptococcus pneumoniae/classificação , Adulto Jovem , Ceftarolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA