Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35180381

RESUMO

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunidade nas Mucosas , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Citocinas/sangue , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Vetores Genéticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Neutralização , Nucleocapsídeo/genética , Nucleocapsídeo/imunologia , Nucleocapsídeo/metabolismo , Pan troglodytes , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Nat Immunol ; 17(1): 65-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26595887

RESUMO

Viral respiratory tract infections are the main causative agents of the onset of infection-induced asthma and asthma exacerbations that remain mechanistically unexplained. Here we found that deficiency in signaling via type I interferon receptor led to deregulated activation of group 2 innate lymphoid cells (ILC2 cells) and infection-associated type 2 immunopathology. Type I interferons directly and negatively regulated mouse and human ILC2 cells in a manner dependent on the transcriptional activator ISGF3 that led to altered cytokine production, cell proliferation and increased cell death. In addition, interferon-γ (IFN-γ) and interleukin 27 (IL-27) altered ILC2 function dependent on the transcription factor STAT1. These results demonstrate that type I and type II interferons, together with IL-27, regulate ILC2 cells to restrict type 2 immunopathology.


Assuntos
Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Linfócitos/imunologia , Infecções Respiratórias/imunologia , Animais , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções Respiratórias/patologia
3.
Nucleic Acids Res ; 49(13): 7267-7279, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232998

RESUMO

We performed in vitro selection experiments to identify DNA aptamers for the S1 subunit of the SARS-CoV-2 spike protein (S1 protein). Using a pool of pre-structured random DNA sequences, we obtained over 100 candidate aptamers after 13 cycles of enrichment under progressively more stringent selection pressure. The top 10 sequences all exhibited strong binding to the S1 protein. Two aptamers, named MSA1 (Kd = 1.8 nM) and MSA5 (Kd = 2.7 nM), were assessed for binding to the heat-treated S1 protein, untreated S1 protein spiked into 50% human saliva and the trimeric spike protein of both the wildtype and the B.1.1.7 variant, demonstrating comparable affinities in all cases. MSA1 and MSA5 also recognized the pseudotyped lentivirus of SARS-CoV-2 with respective Kd values of 22.7 pM and 11.8 pM. Secondary structure prediction and sequence truncation experiments revealed that both MSA1 and MSA5 adopted a hairpin structure, which was the motif pre-designed into the original library. A colorimetric sandwich assay was developed using MSA1 as both the recognition element and detection element, which was capable of detecting the pseudotyped lentivirus in 50% saliva with a limit of detection of 400 fM, confirming the potential of these aptamers as diagnostic tools for COVID-19 detection.


Assuntos
Aptâmeros de Nucleotídeos , COVID-19/virologia , Biblioteca Gênica , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Pareamento de Bases , Sequência de Bases , COVID-19/diagnóstico , Colorimetria/métodos , Humanos , Conformação de Ácido Nucleico , Técnica de Seleção de Aptâmeros
4.
J Immunol ; 200(2): 450-458, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29311387

RESUMO

Oncolytic viruses (OVs) are multimodal cancer therapeutics, with one of their dominant mechanisms being in situ vaccination. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. Immunogenic cell death (ICD) is a paradigm of cellular demise culminating in the spatiotemporal release of danger-associated molecular patterns that induce potent anticancer immunity. Alongside traditional ICD inducers like anthracycline chemotherapeutics and radiation, OVs have emerged as novel members of this class of therapeutics. OVs replicate in cancers and release tumor Ags, which are perceived as dangerous because of simultaneous expression of pathogen-associated molecular patterns that activate APCs. Therefore, OVs provide the target Ags and danger signals required to induce adaptive immune responses. This review discusses why OVs are attractive candidates for generating ICD, biological barriers limiting their success in the clinic, and groundbreaking strategies to potentiate ICD and antitumor immunity with rationally designed OV-based combination therapies.


Assuntos
Morte Celular/imunologia , Sistema Imunitário/imunologia , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/imunologia , Alarminas/genética , Alarminas/metabolismo , Animais , Terapia Combinada/métodos , Terapia Genética/métodos , Humanos , Sistema Imunitário/metabolismo , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética
5.
Cytokine ; 124: 154439, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-29908921

RESUMO

Despite effective new treatments for Hepatitis C virus (HCV) infection, development of drug resistance, safety concerns and cost are remaining challenges. More importantly, there is no vaccine available against hepatitis C infection. Recent data suggest that there is a strong correlation between spontaneous HCV clearance and human NK cell function, particularly IFN-γ production. Further, IL-15 has innate antiviral activity and is also one of the main factors that activates NK cells to produce IFN-γ. To examine whether IL-15 and IFN-γ have direct antiviral activity against HCV, Huh7.5 cells were treated with either IFN-γ or IL-15 prior to HCV infection. Our data demonstrate that IFN-γ and IL-15 block HCV replication in vitro. Additionally, we show that IL-15 and IFN-γ do not induce anti-HCV effects through the type I interferon signaling pathway or nitric oxide (NO) production. Instead, IL-15 and IFN-γ provide protection against HCV via the ERK pathway. Treatment of Huh7.5 cells with a MEK/ERK inhibitor abrogated the anti-HCV effects of IL-15 and IFN-γ and overexpression of ERK1 prevented HCV replication compared to control transfection. Our in vitro data support the hypothesis that early production of IL-15 and activation of NK cells in the liver lead to control of HCV replication.


Assuntos
Hepacivirus/fisiologia , Interferon gama/farmacologia , Interleucina-15/farmacologia , Células Matadoras Naturais/imunologia , Fígado/imunologia , Fígado/virologia , Sistema de Sinalização das MAP Quinases/imunologia , Replicação Viral , Antivirais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Hepacivirus/efeitos dos fármacos , Hepacivirus/imunologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Interferon-alfa/farmacologia , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Óxido Nítrico/farmacologia , Regulação para Cima , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
6.
Immunol Cell Biol ; 96(9): 922-934, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29617041

RESUMO

Nucleic acids are potential pathogen-associated or danger-associated molecular patterns that modulate immune responses and the development of autoimmune disorders. Class A scavenger receptors (SR-As) are a diverse group of pattern recognition receptors that recognize a variety of polyanionic ligands including nucleic acids. While SR-As are important for the recognition and internalization of extracellular dsRNA, little is known about extracellular DNA, despite its association with chronic infections and autoimmune disorders. In this study, we investigated the specificity of and requirement for SR-As in binding and internalizing different species, sequences and lengths of nucleic acids. We purified recombinant coiled-coil/collagenous and scavenger receptor cysteine-rich (SRCR) domains that have been implicated as potential ligand-binding domains. We detected a direct interaction of RNA and DNA species with the coiled-coil/collagenous domain, but not the SRCR domain. Despite the presence of additional surface receptors that bind nucleic acids, SR-As were found to be sufficient for nucleic acid binding and uptake in A549 human lung epithelial cells. Moreover, these findings suggest that the coiled-coil/collagenous domain of SR-As is sufficient to bind nucleic acids independent of species, sequence or length.


Assuntos
Ácidos Nucleicos/metabolismo , RNA de Cadeia Dupla/metabolismo , Receptores Depuradores Classe A/metabolismo , Internalização do Vírus , Células A549 , Sequência de Aminoácidos , Humanos , Ácidos Nucleicos/imunologia , Receptores de Reconhecimento de Padrão , Receptores Depuradores Classe A/imunologia
7.
J Immunol ; 195(8): 3858-65, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26363049

RESUMO

dsRNA is a potent trigger of innate immune signaling, eliciting effects within virally infected cells and after release from dying cells. Given its inherent stability, extracellular dsRNA induces both local and systemic effects. Although the class A scavenger receptors (SR-As) mediate dsRNA entry, it is unknown whether they contribute to signaling beyond ligand internalization. In this study, we investigated whether SR-As contribute to innate immune signaling independent of the classic TLR and retinoic acid-inducible gene-I-like receptor (RLR) pathways. We generated a stable A549 human epithelial cell line with inducible expression of the hepatitis C virus protease NS3/4A, which efficiently cleaves TRIF and IFN-ß promoter stimulator 1, adaptors for TLR3 and the RLRs, respectively. Cells expressing NS3/4A and TLR3/MyD88/IFN-ß promoter stimulator 1(-/-) mouse embryonic fibroblasts completely lacked antiviral activity to extracellular dsRNA relative to control cells, suggesting that SR-As do not possess signaling capacity independent of TLR3 or the RLRs. Previous studies implicated PI3K signaling in SR-A-mediated activities and in downstream production of type I IFN. We found that SR-A-mediated dsRNA internalization occurs independent of PI3K activation, whereas downstream signaling leading to IFN production was partially dependent on PI3K activity. Overall, these findings suggest that SR-A-mediated dsRNA internalization is independent of innate antiviral signaling.


Assuntos
Hepacivirus/imunologia , Imunidade Inata , Fosfatidilinositol 3-Quinases/imunologia , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia , Receptores Depuradores Classe A/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Fosfatidilinositol 3-Quinases/genética , RNA de Cadeia Dupla/genética , Receptores Depuradores Classe A/genética , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Proteínas não Estruturais Virais/imunologia
8.
J Immunol ; 195(10): 4650-9, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26459352

RESUMO

Type I IFNs (IFN-I) are cytokines that can mediate both immune suppression and activation. Dendritic cells (DC) are significant producers of IFN-I, and depending on the context (nature of Ag, duration of exposure to Ag), DC-derived IFN-I can have varying effects on CD8(+) T cell responses. In this study, we report that in the context of a CD8(+) T cell response to a self-Ag, DC-intrinsic expression of IFN regulatory factor 3 is required to induce optimal proliferation and migration of autoreactive CD8(+) T cells, ultimately determining their ability to infiltrate a target tissue (pancreas), and the development of glucose intolerance in rat insulin promoter-glycoprotein (RIP-GP) mice. Moreover, we show that signals through the lymphotoxin-ß receptor (LTßR) in DC are also required for the proliferation of autoreactive CD8(+) T cells, the upregulation of VLA4/LFA1 on activated CD8(+) T cells, and their subsequent infiltration into the pancreas both in vitro and in vivo. Importantly, the defects in autoreactive CD8(+) T cell proliferation, accumulation of CD8(+) T cells in the pancreas, and consequent glucose intolerance observed in the context of priming by LTßR(-/-) DC could be rescued by exogenous addition of IFN-I. Collectively, our data demonstrate that the LTßR/IFN-I axis is essential for programming of CD8(+) T cells to mediate immunopathology in a self-tissue. A further understanding of the IFN-I/LTßR axis will provide valuable therapeutic insights for treatment of CD8(+) T cell-mediated autoimmune diseases.


Assuntos
Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon Tipo I/imunologia , Receptor beta de Linfotoxina/imunologia , Animais , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Proliferação de Células , Células Cultivadas , Células Dendríticas/imunologia , Intolerância à Glucose/imunologia , Inflamação/imunologia , Fator Regulador 3 de Interferon/imunologia , Ativação Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/biossíntese , Receptor beta de Linfotoxina/genética , Linfotoxina-beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/citologia , Pâncreas/imunologia
9.
Proc Natl Acad Sci U S A ; 111(31): E3206-13, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049377

RESUMO

Myeloid cells play a critical role in perpetuating inflammation during various chronic diseases. Recently the death of macrophages through programmed necrosis (necroptosis) has emerged as an important mechanism in inflammation and pathology. We evaluated the mechanisms that lead to the induction of necrotic cell death in macrophages. Our results indicate that type I IFN (IFN-I) signaling is a predominant mechanism of necroptosis, because macrophages deficient in IFN-α receptor type I (IFNAR1) are highly resistant to necroptosis after stimulation with LPS, polyinosinic-polycytidylic acid, TNF-α, or IFN-ß in the presence of caspase inhibitors. IFN-I-induced necroptosis occurred through both mechanisms dependent on and independent of Toll/IL-1 receptor domain-containing adaptor inducing IFN-ß (TRIF) and led to persistent phosphorylation of receptor-interacting protein 3 (Rip3) kinase, which resulted in potent necroptosis. Although various IFN-regulatory factors (IRFs) facilitated the induction of necroptosis in response to IFN-ß, IRF-9-STAT1- or -STAT2-deficient macrophages were highly resistant to necroptosis. Our results indicate that IFN-ß-induced necroptosis of macrophages proceeds through tonic IFN-stimulated gene factor 3 (ISGF3) signaling, which leads to persistent expression of STAT1, STAT2, and IRF9. Induction of IFNAR1/Rip3-dependent necroptosis also resulted in potent inflammatory pathology in vivo. These results reveal how IFN-I mediates acute inflammation through macrophage necroptosis.


Assuntos
Apoptose , Interferon Tipo I/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inflamação , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Necrose , Oligopeptídeos/farmacologia , Poli I-C/farmacologia , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
10.
J Virol ; 89(19): 9841-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178983

RESUMO

UNLABELLED: It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE: While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both our understanding of basic cellular biology as well as how this protein is co-opted by HSV.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Simplexvirus/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Rede trans-Golgi/metabolismo , Western Blotting , Linhagem Celular Tumoral , Fibroblastos , Humanos , Imunoprecipitação , Microscopia de Fluorescência , RNA Interferente Pequeno/genética , Ensaio de Placa Viral
11.
J Virol ; 90(6): 3018-27, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719279

RESUMO

UNLABELLED: The type I interferon (IFN) response is an important aspect of innate antiviral defense, and the transcription factor IRF3 plays an important role in its induction. Membrane perturbation during fusion, a necessary step for enveloped virus particle entry, appears sufficient to induce transcription of a subset of IFN-stimulated genes (ISGs) in an IRF3-dependent, IFN-independent fashion. IRF3 is emerging as a central node in host cell stress responses, although it remains unclear how different forms of stress activate IRF3. Here, we investigated the minimum number of Sendai virus (SeV) and human cytomegalovirus (HCMV) particles required to activate IRF3 and trigger an antiviral response. We found that Ca(2+) signaling associated with membrane perturbation and recognition of incoming viral genomes by cytosolic nucleic acid receptors are required to activate IRF3 in response to fewer than 13 particles of SeV and 84 particles of HCMV per cell. Moreover, it appears that Ca(2+) signaling is important for activation of STING and IRF3 following HCMV particle entry, suggesting that Ca(2+) signaling sensitizes cells to recognize genomes within incoming virus particles. To our knowledge, this is the first evidence that cytosolic nucleic acid sensors recognize genomes within incoming virus particles prior to virus replication. These studies highlight the exquisite sensitivity of the cellular response to low-level stimuli and suggest that virus particle entry is sensed as a stress signal. IMPORTANCE: The mechanism by which replicating viruses trigger IRF3 activation and type I IFN induction through the generation and accumulation of viral pathogen-associated molecular patterns has been well characterized. However, the mechanism by which enveloped virus particle entry mediates a stress response, leading to IRF3 activation and the IFN-independent response, remained elusive. Here, we find that Ca(2+) signaling associated with membrane perturbation appears to sensitize cells to recognize genomes within incoming virus particles. To our knowledge, this is the first study to show that cytosolic receptors recognize genomes within incoming virus particles prior to virus replication. These findings not only highlight the sensitivity of cellular responses to low-level virus particle stimulation, but provide important insights into how nonreplicating virus vectors or synthetic lipid-based carriers used as clinical delivery vehicles activate innate immune responses.


Assuntos
Sinalização do Cálcio , Citomegalovirus/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Vírus Sendai/imunologia , Internalização do Vírus , Animais , Linhagem Celular , Citomegalovirus/fisiologia , Humanos , Camundongos , Camundongos Knockout , Vírus Sendai/fisiologia
12.
J Virol ; 88(12): 6885-95, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696490

RESUMO

UNLABELLED: Oncolytic viruses (OVs) are attractive avenues of cancer therapy due to the absence of toxic side effects often seen with current treatment modalities. Bovine herpesvirus 1 (BHV-1) is a species-specific virus that does not induce cytotoxicity in normal primary human cells but can infect and kill various human immortalized and transformed cell lines. To gain a better understanding of the oncolytic breadth of BHV-1, the NCI panel of established human tumor cell lines was screened for sensitivity to the virus. Overall, 72% of the panel is permissive to BHV-1 infection, with corresponding decreases in cellular viability. This sensitivity is in comparison to a sensitivity of only 32% for a herpes simplex virus 1 (HSV-1)-based oncolytic vector. Strikingly, while 35% of the panel supports minimal or no BHV-1 replication, significant decreases in cellular viability still occur. These data suggest that BHV-1 is an OV with tropism for multiple tumor types and is able to induce cytotoxicity independent of significant virus replication. In contrast to other species-specific OVs, cellular sensitivity to BHV-1 does not correlate with type I interferon (IFN) signaling; however, mutations in KRAS were found to correlate with high levels of virus replication. The knockdown or overexpression of KRAS in human tumor cell lines yields modest changes in viral titers; however, overexpression of KRAS in normal primary cells elicits permissivity to BHV-1 infection. Together, these data suggest that BHV-1 is a broad-spectrum OV with a distinct mechanism of tumor targeting. IMPORTANCE: Cancer remains a significant health issue, and novel treatments are required, particularly for tumors that are refractory to conventional therapies. Oncolytic viruses are a novel platform given their ability to specifically target tumor cells while leaving healthy cells intact. For this strategy to be successful, a fundamental understanding of virus-host interactions is required. We previously identified bovine herpesvirus 1 as a novel oncolytic virus with many unique and clinically relevant features. Here, we show that BHV-1 can target a wide range of human cancer types, most potently lung cancer. In addition, we show that enhanced KRAS activity, a hallmark of many cancers, is one of the factors that increases BHV-1 oncolytic capacity. These findings hold potential for future treatments, particularly in the context of lung cancer, where KRAS mutations are a negative predictor of treatment efficacy.


Assuntos
Neoplasias/metabolismo , Neoplasias/virologia , Vírus Oncolíticos/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Replicação Viral , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias/genética , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras/genética
13.
J Virol ; 88(14): 8091-101, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24807717

RESUMO

The immediate-early protein ICP0 from herpes simplex virus 1 (HSV-1) plays pleiotropic roles in promoting viral lytic replication and reactivation from latency. Most of the known actions of ICP0 occur in the nucleus and are thought to involve the E3 ubiquitin ligase activity of its RING finger domain, which targets proteins for degradation via the proteasome. Although ICP0 translocates to the cytoplasm as the infection progresses, little is known about its activities in this location. Here, we show that cytoplasmic ICP0 has two distinct functions. In primary cell cultures and in an intravaginal mouse model, cytoplasmic ICP0 promotes viral replication in the absence of an intact RING finger domain. Additionally, ICP0 blocks the activation of interferon regulatory factor 3 (IRF3), a key transcription factor of the innate antiviral response, in a mechanism that requires the RING finger domain but not the proteasome. To our knowledge, this is the first observation of a proteasome-independent function of the RING finger domain of ICP0. Collectively, these results underscore the importance of cytoplasm-localized ICP0 and the diverse nature of its activities. Importance: Despite ICP0 being a well-studied viral protein, the significance of its cytoplasmic localization has been largely overlooked. This is, in part, because common experimental manipulations result in the restriction of ICP0 to the nucleus. By overcoming this constraint, we both further characterize the ability of cytoplasmic ICP0 to inhibit antiviral signaling and show that ICP0 at this site has unexpected activities in promoting viral replication. This demonstrates the importance of considering location when analyzing protein function and adds a new perspective to our understanding of this multifaceted protein.


Assuntos
Citoplasma/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Fator Regulador 3 de Interferon/antagonistas & inibidores , Domínios RING Finger , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Herpes Simples/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
14.
J Immunol ; 190(1): 250-8, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23197261

RESUMO

Streptococcus pneumoniae is a common human pathogen that accounts for >1 million deaths every year. Colonization of the nasopharynx by S. pneumoniae precedes pulmonary and other invasive diseases and, therefore, is a promising target for intervention. Because the receptors scavenger receptor A (SRA), macrophage receptor with collagenous structure (MARCO), and mannose receptor (MR) have been identified as nonopsonic receptors for S. pneumoniae in the lung, we used scavenger receptor knockout mice to study the roles of these receptors in the clearance of S. pneumoniae from the nasopharynx. MARCO(-/-), but not SRA(-/-) or MR(-/-), mice had significantly impaired clearance of S. pneumoniae from the nasopharynx. In addition to impairment in bacterial clearance, MARCO(-/-) mice had abrogated cytokine production and cellular recruitment to the nasopharynx following colonization. Furthermore, macrophages from MARCO(-/-) mice were deficient in cytokine and chemokine production, including type I IFNs, in response to S. pneumoniae. MARCO was required for maximal TLR2- and nucleotide-binding oligomerization domain-containing (Nod)2-dependent NF-κB activation and signaling that ultimately resulted in clearance. Thus, MARCO is an important component of anti-S. pneumoniae responses in the murine nasopharynx during colonization.


Assuntos
Nasofaringe/imunologia , Nasofaringe/microbiologia , Proteína Adaptadora de Sinalização NOD2/fisiologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Receptores Imunológicos/fisiologia , Streptococcus pneumoniae/imunologia , Receptor 2 Toll-Like/fisiologia , Animais , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nasofaringe/patologia , Infecções Pneumocócicas/prevenção & controle , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/patogenicidade , Fatores de Tempo
15.
J Immunol ; 191(8): 4246-58, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24043886

RESUMO

Although women constitute half of all HIV-1-infected people worldwide (UNAIDS World AIDS Day Report, 2011), the earliest events in the female reproductive tract (FRT) during heterosexual HIV-1 transmission are poorly understood. Recently, we demonstrated that HIV-1 could directly impair the mucosal epithelial barrier in the FRT. This suggested that the HIV-1 envelope glycoprotein gp120 was being recognized by a membrane receptor on genital epithelial cells, leading to innate immune activation. In this study, we report that pattern-recognition receptors TLR2 and -4 bind to HIV-1 gp120 and trigger proinflammatory cytokine production via activation of NF-κB. The gp120-TLR interaction also required the presence of heparan sulfate (HS). Bead-binding assays showed that gp120 can bind to HS, TLR2, and TLR4, and studies in transfected HEK293 cells demonstrated that HS and TLR2 and -4 were necessary to mediate downstream signaling. Exposure to seminal plasma from HIV-1-infected and uninfected men with gp120 added to it induced a significant proinflammatory cytokine response from genital epithelial cells and disruption of tight junctions, indicating a role for gp120 in mucosal barrier disruption during HIV-1 heterosexual transmission. These studies provide, for the first time to our knowledge, a possible mechanism by which HIV-1 gp120 could directly initiate innate immune activation in the FRT during heterosexual transmission.


Assuntos
Genitália Feminina/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , HIV-1 , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto , Linhagem Celular , Citocinas/biossíntese , Ativação Enzimática , Epitélio/imunologia , Epitélio/virologia , Feminino , Genitália Feminina/virologia , Células HEK293 , Infecções por HIV/transmissão , HIV-1/imunologia , HIV-1/metabolismo , Heparitina Sulfato , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Mucosa/imunologia , Mucosa/virologia , NF-kappa B/metabolismo , Ligação Proteica , Sêmen/metabolismo , Sêmen/virologia , Transdução de Sinais/imunologia , Junções Íntimas/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia
16.
Future Oncol ; 11(4): 675-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25686121

RESUMO

ABSTRACT Despite huge economic and intellectual investments, developing effective cancer treatments continues to be an overarching challenge. Engineered oncolytic viruses (OVs) present self-amplifying immunotherapy platforms capable of preferential cytotoxicity to cancer cells and simultaneous activation of host anti-tumor immunity. In preclinical studies, OVs are showing potent therapeutic effects when used in combination with other immune therapy strategies. In the clinic, the immunotherapeutic effects of OVs are showing promising results. Here we review current strategies for engineering OVs, and present a perspective of future directions within a discussion of the current outcomes of combinatorial approaches with other cancer immunotherapy platforms.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos , Evasão Tumoral/imunologia , Animais , Terapia Combinada , Humanos , Tolerância Imunológica/imunologia , Vigilância Imunológica , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Evasão Tumoral/genética , Replicação Viral/imunologia
17.
Mol Ther ; 22(2): 251-256, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24048442

RESUMO

Oncolytic viruses are novel immunotherapeutics with increasingly promising outcomes in cancer patient clinical trials. Preclinical and clinical studies have uncovered the importance of virus-induced activation of antitumor immune responses for optimal therapeutic efficacy. Recently, several classes of chemotherapeutics have been shown to cause immunogenic cancer cell death characterized by the release of immunomodulatory molecules that activate antigen-presenting cells and thus trigger the induction of more potent anticancer adaptive immune responses. In preclinical models, several oncolytic viruses induce immunogenic cell death, which is associated with increased cross-priming of tumor-associated antigens. In this review, we discuss the recent advances in immunogenic cancer cell death as induced by chemotherapeutic treatments, including the roles of relevant danger-associated molecular patterns and signaling pathways, and highlighting the significance of the endoplasmic reticulum (ER) stress response. As virtually all viruses modulate both ER stress and cell death responses, we provide perspectives on future research directions that can be explored to optimize oncolytic viruses, alone or in combination with targeted drug therapies, as potent immunogenic cancer cell death-inducing agents. We propose that such optimized virus-drug synergistic strategies will improve the therapeutic outcomes for many currently intractable cancers.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Animais , Morte Celular/genética , Morte Celular/imunologia , Estresse do Retículo Endoplasmático , Humanos , Sistema Imunitário , Imunoterapia , Neoplasias/genética , Neoplasias/imunologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia
18.
Mol Ther ; 22(1): 123-31, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24343053

RESUMO

Within the oncolytic virus field, the extent of virus replication that is essential for immune stimulation to control tumor growth remains unresolved. Using infected cell protein 0 (ICP0)-defective oncolytic Herpes simplex virus type 1 (HSV-1) and HSV-2 viruses (dICP0 and dNLS) that show differences in their in vitro replication and cytotoxicity, we investigated the inherent features of oncolytic HSV viruses that are required for potent antitumor activity. In vitro, the HSV-2 vectors showed rapid cytotoxicity despite lower viral burst sizes compared to HSV-1 vectors. In vivo, although both of the dICP0 vectors initially replicated to a similar level, HSV-1 dICP0 was rapidly cleared from the tumors. In spite of this rapid clearance, HSV-1 dICP0 treatment conferred significant survival benefit. HSV-1 dICP0-treated tumors showed significantly higher levels of danger-associated molecular patterns that correlated with higher numbers of antigen-presenting cells within the tumor and increased antigen-specific CD8+ T-cell levels in the peripheral blood. This study suggests that, at least in the context of oncolytic HSV, the initial stages of immunogenic virus replication leading to activation of antitumor immunity are more important than persistence of a replicating virus within the tumor. This knowledge provides important insight for the design of therapeutically successful oncolytic viruses.


Assuntos
Vetores Genéticos/genética , Neoplasias/genética , Neoplasias/imunologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Simplexvirus/genética , Simplexvirus/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Apoptose/genética , Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Proteína HMGB1/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Mutação , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/terapia , Terapia Viral Oncolítica , Receptor ErbB-2/imunologia , Carga Tumoral/genética , Carga Tumoral/imunologia , Replicação Viral
19.
J Immunother Cancer ; 12(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580330

RESUMO

BACKGROUND: Initiation of antitumor immunity is reliant on the stimulation of dendritic cells (DCs) to present tumor antigens to naïve T cells and generate effector T cells that can kill cancer cells. Induction of immunogenic cell death after certain types of cytotoxic anticancer therapies can stimulate T cell-mediated immunity. However, cytotoxic therapies simultaneously activate multiple types of cellular stress and programmed cell death; hence, it remains unknown what types of cancer cell death confer superior antitumor immunity. METHODS: Murine cancer cells were engineered to activate apoptotic or pyroptotic cell death after Dox-induced expression of procell death proteins. Cell-free supernatants were collected to measure secreted danger signals, cytokines, and chemokines. Tumors were formed by transplanting engineered tumor cells to specifically activate apoptosis or pyroptosis in established tumors and the magnitude of immune response measured by flow cytometry. Tumor growth was measured using calipers to estimate end point tumor volumes for Kaplan-Meier survival analysis. RESULTS: We demonstrated that, unlike apoptosis, pyroptosis induces an immunostimulatory secretome signature. In established tumors pyroptosis preferentially activated CD103+ and XCR1+ type I conventional DCs (cDC1) along with a higher magnitude and functionality of tumor-specific CD8+ T cells and reduced number of regulatory T cells within the tumor. Depletion of cDC1 or CD4+ and CD8+ T cells ablated the antitumor response leaving mice susceptible to a tumor rechallenge. CONCLUSION: Our study highlights that distinct types of cell death yield varying immunotherapeutic effect and selective activation of pyroptosis can be used to potentiate multiple aspects of the anticancer immunity cycle.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Piroptose , Células Dendríticas , Citocinas/metabolismo
20.
Immunology ; 138(3): 190-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23173987

RESUMO

The type I interferon (IFN) system mediates a wide variety of antiviral effects and represents an important first barrier to virus infection. Consequently, viruses have developed an impressive diversity of tactics to circumvent IFN responses. Evasion strategies can involve preventing initial virus detection, via the disruption of the Toll-like receptors or the retinoic acid inducible gene I (RIG-I) -like receptors, or by avoiding the initial production of the ligands recognized by these receptors. An alternative approach is to preclude IFN production by disarming or degrading the transcription factors involved in the expression of IFN, such as interferon regulatory factor 3 (IRF3)/IRF7, nuclear factor-κB (NF-κB), or ATF-2/c-jun, or by inducing a general block on host cell transcription. Viruses also oppose IFN signalling, both by disturbing the type I IFN receptor and by impeding JAK/STAT signal transduction upon IFN receptor engagement. In addition, the global expression of IFN-stimulated genes (ISGs) can be obstructed via interference with epigenetic signalling, and specific ISGs can also be selectively targeted for inhibition. Finally, some viruses disrupt IFN responses by co-opting negative regulatory systems, whereas others use antiviral mechanisms to their own advantage. Here, we review recent developments in this field.


Assuntos
Interferon Tipo I/metabolismo , Viroses/imunologia , Viroses/metabolismo , Vírus/imunologia , Animais , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon Tipo I/genética , Fator Gênico 3 Estimulado por Interferon/genética , Fator Gênico 3 Estimulado por Interferon/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Viroses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA