Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 579(7798): 205-209, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32161384

RESUMO

Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers1 and demonstrations of quantum search2 and factoring3 algorithms. Scaling up such concepts requires controlling individual nuclei, which can be detected when coupled to an electron4-6. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods7-9 relied on transducing electric signals into magnetic fields via the electron-nuclear hyperfine interaction, which severely affects nuclear coherence. Here we demonstrate the coherent quantum control of a single 123Sb (spin-7/2) nucleus using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea proposed in 196110 but not previously realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction results in coherent nuclear spin transitions that are uniquely addressable owing to lattice strain. The spin dephasing time, 0.1 seconds, is orders of magnitude longer than those obtained by methods that require a coupled electron spin to achieve electrical driving. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots11,12 could pave the way to scalable, nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.


Assuntos
Modelos Teóricos , Silício/química , Fenômenos Eletromagnéticos , Elétrons , Pontos Quânticos/química
2.
Nano Lett ; 23(1): 17-24, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36573935

RESUMO

The development of devices that exhibit both superconducting and semiconducting properties is an important endeavor for emerging quantum technologies. We investigate superconducting nanowires fabricated on a silicon-on-insulator (SOI) platform. Aluminum from deposited contact electrodes is found to interdiffuse with Si along the entire length of the nanowire, over micrometer length scales and at temperatures well below the Al-Si eutectic. The phase-transformed material is conformal with the predefined device patterns. The superconducting properties of a transformed mesoscopic ring formed on a SOI platform are investigated. Low-temperature magnetoresistance oscillations, quantized in units of the fluxoid, h/2e, are observed.

3.
Nano Lett ; 17(4): 2690-2696, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28355877

RESUMO

Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity. However, accessing the topological properties requires an induced hard superconducting gap, which is challenging to achieve for most material systems. We have systematically studied how the interface between an InSb semiconductor nanowire and a NbTiN superconductor affects the induced superconducting properties. Step by step, we improve the homogeneity of the interface while ensuring a barrier-free electrical contact to the superconductor and obtain a hard gap in the InSb nanowire. The magnetic field stability of NbTiN allows the InSb nanowire to maintain a hard gap and a supercurrent in the presence of magnetic fields (∼0.5 T), a requirement for topological superconductivity in one-dimensional systems. Our study provides a guideline to induce superconductivity in various experimental platforms such as semiconductor nanowires, two-dimensional electron gases, and topological insulators and holds relevance for topological superconductivity and quantum computation.

4.
Phys Rev Lett ; 119(18): 187704, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219554

RESUMO

Junctions created by coupling two superconductors via a semiconductor nanowire in the presence of high magnetic fields are the basis for the potential detection, fusion, and braiding of Majorana bound states. We study NbTiN/InSb nanowire/NbTiN Josephson junctions and find that the dependence of the critical current on the magnetic field exhibits gate-tunable nodes. This is in contrast with a well-known Fraunhofer effect, under which critical current nodes form a regular pattern with a period fixed by the junction area. Based on a realistic numerical model we conclude that the Zeeman effect induced by the magnetic field and the spin-orbit interaction in the nanowire are insufficient to explain the observed evolution of the Josephson effect. We find the interference between the few occupied one-dimensional modes in the nanowire to be the dominant mechanism responsible for the critical current behavior. We also report a strong suppression of critical currents at finite magnetic fields that should be taken into account when designing circuits based on Majorana bound states.

5.
Nat Commun ; 15(1): 1380, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355747

RESUMO

Efficient scaling and flexible control are key aspects of useful quantum computing hardware. Spins in semiconductors combine quantum information processing with electrons, holes or nuclei, control with electric or magnetic fields, and scalable coupling via exchange or dipole interaction. However, accessing large Hilbert space dimensions has remained challenging, due to the short-distance nature of the interactions. Here, we present an atom-based semiconductor platform where a 16-dimensional Hilbert space is built by the combined electron-nuclear states of a single antimony donor in silicon. We demonstrate the ability to navigate this large Hilbert space using both electric and magnetic fields, with gate fidelity exceeding 99.8% on the nuclear spin, and unveil fine details of the system Hamiltonian and its susceptibility to control and noise fields. These results establish high-spin donors as a rich platform for practical quantum information and to explore quantum foundations.

6.
Adv Mater ; 34(3): e2103235, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34632636

RESUMO

Silicon chips containing arrays of single dopant atoms can be the material of choice for classical and quantum devices that exploit single donor spins. For example, group-V donors implanted in isotopically purified 28 Si crystals are attractive for large-scale quantum computers. Useful attributes include long nuclear and electron spin lifetimes of 31 P, hyperfine clock transitions in 209 Bi or electrically controllable 123 Sb nuclear spins. Promising architectures require the ability to fabricate arrays of individual near-surface dopant atoms with high yield. Here, an on-chip detector electrode system with 70 eV root-mean-square noise (≈20 electrons) is employed to demonstrate near-room-temperature implantation of single 14 keV 31 P+ ions. The physics model for the ion-solid interaction shows an unprecedented upper-bound single-ion-detection confidence of 99.85 ± 0.02% for near-surface implants. As a result, the practical controlled silicon doping yield is limited by materials engineering factors including surface gate oxides in which detected ions may stop. For a device with 6 nm gate oxide and 14 keV 31 P+ implants, a yield limit of 98.1% is demonstrated. Thinner gate oxides allow this limit to converge to the upper-bound. Deterministic single-ion implantation can therefore be a viable materials engineering strategy for scalable dopant architectures in silicon devices.

7.
Nat Commun ; 8: 16025, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28681843

RESUMO

Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA