Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Am J Hum Genet ; 111(1): 96-118, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181735

RESUMO

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Assuntos
Proteínas de Drosophila , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Adulto , Animais , Humanos , Alelos , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/genética , Deficiência Intelectual/genética , Peptídeos e Proteínas de Sinalização Intracelular , Transtornos do Neurodesenvolvimento/genética , Proteínas Tirosina Fosfatases
2.
Am J Hum Genet ; 109(5): 909-927, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390279

RESUMO

Pontocerebellar hypoplasias (PCHs) are congenital disorders characterized by hypoplasia or early atrophy of the cerebellum and brainstem, leading to a very limited motor and cognitive development. Although over 20 genes have been shown to be mutated in PCHs, a large proportion of affected individuals remains undiagnosed. We describe four families with children presenting with severe neonatal brainstem dysfunction and pronounced deficits in cognitive and motor development associated with four different bi-allelic mutations in PRDM13, including homozygous truncating variants in the most severely affected individuals. Brain MRI and fetopathological examination revealed a PCH-like phenotype, associated with major hypoplasia of inferior olive nuclei and dysplasia of the dentate nucleus. Notably, histopathological examinations highlighted a sparse and disorganized Purkinje cell layer in the cerebellum. PRDM13 encodes a transcriptional repressor known to be critical for neuronal subtypes specification in the mouse retina and spinal cord but had not been implicated, so far, in hindbrain development. snRNA-seq data mining and in situ hybridization in humans show that PRDM13 is expressed at early stages in the progenitors of the cerebellar ventricular zone, which gives rise to cerebellar GABAergic neurons, including Purkinje cells. We also show that loss of function of prdm13 in zebrafish leads to a reduction in Purkinje cells numbers and a complete absence of the inferior olive nuclei. Altogether our data identified bi-allelic mutations in PRDM13 as causing a olivopontocerebellar hypoplasia syndrome and suggest that early deregulations of the transcriptional control of neuronal fate specification could contribute to a significant number of cases.


Assuntos
Encefalopatias , Peixe-Zebra , Animais , Encefalopatias/patologia , Tronco Encefálico , Cerebelo/anormalidades , Cerebelo/patologia , Deficiências do Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Mutação/genética , Malformações do Sistema Nervoso , Neurogênese/genética , Células de Purkinje/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/metabolismo
3.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395208

RESUMO

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Assuntos
Proteína 7 com Repetições F-Box-WD , Transtornos do Neurodesenvolvimento , Ubiquitinação , Proteína 7 com Repetições F-Box-WD/química , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Transtornos do Neurodesenvolvimento/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Genet Med ; 26(6): 101119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38465576

RESUMO

PURPOSE: Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS: To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS: Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION: Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.


Assuntos
Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Ubiquitina-Proteína Ligases , Humanos , Mutação de Sentido Incorreto/genética , Feminino , Camundongos , Masculino , Animais , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Ubiquitina-Proteína Ligases/genética , Criança , Pré-Escolar , Fenótipo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Lactente
5.
Am J Med Genet A ; 194(1): 9-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37740550

RESUMO

DYRK1A Syndrome (OMIM #614104) is caused by pathogenic variations in the DYRK1A gene located on 21q22. Haploinsufficiency of DYRK1A causes a syndrome with global psychomotor delay and intellectual disability. Low birth weight, growth restriction with feeding difficulties, stature insufficiency, and microcephaly are frequently reported. This study aims to create specific growth charts for individuals with DYRK1A Syndrome and identify parameters for size prognosis. Growth parameters were obtained for 92 individuals with DYRK1A Syndrome (49 males vs. 43 females). The data were obtained from pediatric records, parent reporting, and scientific literature. Growth charts for height, weight, body mass index (BMI), and occipitofrontal circumference (OFC) were generated using generalized additive models through R package gamlss. The growth curves include height, weight, and OFC measurements for patients aged 0-5 years. In accordance with the literature, the charts show that individuals are more likely to present intrauterine growth restriction with low birth weight and microcephaly. The growth is then characterized by severe microcephaly, low weight, and short stature. This study proposes growth charts for widespread use in the management of patients with DYRK1A syndrome.


Assuntos
Deficiência Intelectual , Microcefalia , Masculino , Feminino , Criança , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Gráficos de Crescimento , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Síndrome , Índice de Massa Corporal , Estatura/genética
6.
J Med Genet ; 60(10): 1026-1034, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37197783

RESUMO

BACKGROUND: RNA polymerase III-related or 4H leukodystrophy (POLR3-HLD) is an autosomal recessive hypomyelinating leukodystrophy characterized by neurological dysfunction, hypodontia and hypogonadotropic hypogonadism. The disease is caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C or POLR3K. Craniofacial abnormalities reminiscent of Treacher Collins syndrome have been originally described in patients with POLR3-HLD caused by biallelic pathogenic variants in POLR1C. To date, no published studies have appraised in detail the craniofacial features of patients with POLR3-HLD. In this work, the specific craniofacial characteristics of patients with POLR3-HLD associated with biallelic pathogenic variants in POLR3A, POLR3B and POLR1C are described. METHODS: The craniofacial features of 31 patients with POLR3-HLD were evaluated, and potential genotype-phenotype associations were evaluated. RESULTS: Various craniofacial abnormalities were recognized in this patient cohort, with each individual presenting at least one craniofacial abnormality. The most frequently identified features included a flat midface (61.3%), a smooth philtrum (58.0%) and a pointed chin (51.6%). In patients with POLR3B biallelic variants, a thin upper lip was frequent. Craniofacial anomalies involving the forehead were most commonly associated with biallelic variants in POLR3A and POLR3B while a higher proportion of patients with POLR1C biallelic variants demonstrated bitemporal narrowing. CONCLUSION: Through this study, we demonstrated that craniofacial abnormalities are common in patients with POLR3-HLD. This report describes in detail the dysmorphic features of POLR3-HLD associated with biallelic variants in POLR3A, POLR3B and POLR1C.


Assuntos
Doenças Desmielinizantes , Doenças Neurodegenerativas , Humanos , RNA Polimerase III/genética , Padrões de Herança , RNA Polimerases Dirigidas por DNA/genética
7.
J Med Genet ; 61(1): 36-46, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37586840

RESUMO

PURPOSE: Wide access to clinical exome/genome sequencing (ES/GS) enables the identification of multiple molecular diagnoses (MMDs), being a long-standing but underestimated concept, defined by two or more causal loci implicated in the phenotype of an individual with a rare disease. Only few series report MMDs rates (1.8% to 7.1%). This study highlights the increasing role of MMDs in a large cohort of individuals addressed for congenital anomalies/intellectual disability (CA/ID). METHODS: From 2014 to 2021, our diagnostic laboratory rendered 880/2658 positive ES diagnoses for CA/ID aetiology. Exhaustive search on MMDs from ES data was performed prospectively (January 2019 to December 2021) and retrospectively (March 2014 to December 2018). RESULTS: MMDs were identified in 31/880 individuals (3.5%), responsible for distinct (9/31) or overlapping (22/31) phenotypes, and potential MMDs in 39/880 additional individuals (4.4%). CONCLUSION: MMDs are frequent in CA/ID and remain a strong challenge. Reanalysis of positive ES data appears essential when phenotypes are partially explained by the initial diagnosis or atypically enriched overtime. Up-to-date clinical data, clinical expertise from the referring physician, strong interactions between clinicians and biologists, and increasing gene discoveries and improved ES bioinformatics tools appear all the more fundamental to enhance chances of identifying MMDs. It is essential to provide appropriate patient care and genetic counselling.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Estudos Retrospectivos , Fenótipo , Sequenciamento do Exoma , Doenças Raras/genética
8.
Am J Hum Genet ; 106(4): 438-452, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197073

RESUMO

The neuro-oncological ventral antigen 2 (NOVA2) protein is a major factor regulating neuron-specific alternative splicing (AS), previously associated with an acquired neurologic condition, the paraneoplastic opsoclonus-myoclonus ataxia (POMA). We report here six individuals with de novo frameshift variants in NOVA2 affected with a severe neurodevelopmental disorder characterized by intellectual disability (ID), motor and speech delay, autistic features, hypotonia, feeding difficulties, spasticity or ataxic gait, and abnormal brain MRI. The six variants lead to the same reading frame, adding a common proline rich C-terminal part instead of the last KH RNA binding domain. We detected 41 genes differentially spliced after NOVA2 downregulation in human neural cells. The NOVA2 variant protein shows decreased ability to bind target RNA sequences and to regulate target AS events. It also fails to complement the effect on neurite outgrowth induced by NOVA2 downregulation in vitro and to rescue alterations of retinotectal axonal pathfinding induced by loss of NOVA2 ortholog in zebrafish. Our results suggest a partial loss-of-function mechanism rather than a full heterozygous loss-of-function, although a specific contribution of the novel C-terminal extension cannot be excluded.


Assuntos
Mutação da Fase de Leitura/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios/fisiologia , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Processamento Alternativo/genética , Animais , Orientação de Axônios/genética , Sequência de Bases/genética , Células Cultivadas , Pré-Escolar , Regulação para Baixo/genética , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Camundongos , Hipotonia Muscular/genética , Antígeno Neuro-Oncológico Ventral , Peixe-Zebra/genética
9.
Am J Hum Genet ; 106(4): 484-495, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32220290

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.


Assuntos
Aciltransferases/genética , Moléculas de Adesão Celular/genética , Doenças Cerebelares/genética , Epilepsia/genética , Variação Genética/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Alelos , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Malformações do Sistema Nervoso/genética , Linhagem , Síndrome
10.
Am J Hum Genet ; 106(3): 338-355, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109419

RESUMO

The Rho-guanine nucleotide exchange factor (RhoGEF) TRIO acts as a key regulator of neuronal migration, axonal outgrowth, axon guidance, and synaptogenesis by activating the GTPase RAC1 and modulating actin cytoskeleton remodeling. Pathogenic variants in TRIO are associated with neurodevelopmental diseases, including intellectual disability (ID) and autism spectrum disorders (ASD). Here, we report the largest international cohort of 24 individuals with confirmed pathogenic missense or nonsense variants in TRIO. The nonsense mutations are spread along the TRIO sequence, and affected individuals show variable neurodevelopmental phenotypes. In contrast, missense variants cluster into two mutational hotspots in the TRIO sequence, one in the seventh spectrin repeat and one in the RAC1-activating GEFD1. Although all individuals in this cohort present with developmental delay and a neuro-behavioral phenotype, individuals with a pathogenic variant in the seventh spectrin repeat have a more severe ID associated with macrocephaly than do most individuals with GEFD1 variants, who display milder ID and microcephaly. Functional studies show that the spectrin and GEFD1 variants cause a TRIO-mediated hyper- or hypo-activation of RAC1, respectively, and we observe a striking correlation between RAC1 activation levels and the head size of the affected individuals. In addition, truncations in TRIO GEFD1 in the vertebrate model X. tropicalis induce defects that are concordant with the human phenotype. This work demonstrates distinct clinical and molecular disorders clustering in the GEFD1 and seventh spectrin repeat domains and highlights the importance of tight control of TRIO-RAC1 signaling in neuronal development.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Estudos de Coortes , Feminino , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Masculino , Fenótipo , Proteínas Serina-Treonina Quinases/química , Homologia de Sequência de Aminoácidos
11.
Am J Hum Genet ; 107(1): 164-172, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32553196

RESUMO

CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.


Assuntos
Deficiências do Desenvolvimento/genética , Expressão Gênica/genética , Transtornos do Neurodesenvolvimento/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , RNA/genética , Receptores CCR4/genética , Fatores de Transcrição/genética , Alelos , Feminino , Variação Genética/genética , Haploinsuficiência/genética , Heterozigoto , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Fenótipo , Estabilidade Proteica
12.
Genet Med ; 25(4): 100018, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681873

RESUMO

PURPOSE: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. METHODS: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. RESULTS: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). CONCLUSION: The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.


Assuntos
Deficiência Intelectual , Humanos , Sequenciamento do Exoma , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Alelos , Genótipo
13.
J Med Genet ; 59(5): 445-452, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34085946

RESUMO

OBJECTIVE: To assess the efficiency and relevance of clinical exome sequencing (cES) as a first-tier or second-tier test for the diagnosis of progressive neurological disorders in the daily practice of Neurology and Genetic Departments. METHODS: Sixty-seven probands with various progressive neurological disorders (cerebellar ataxias, neuromuscular disorders, spastic paraplegias, movement disorders and individuals with complex phenotypes labelled 'other') were recruited over a 4-year period regardless of their age, gender, familial history and clinical framework. Individuals could have had prior genetic tests as long as it was not cES. cES was performed in a proband-only (60/67) or trio (7/67) strategy depending on available samples and was analysed with an in-house pipeline including software for CNV and mitochondrial-DNA variant detection. RESULTS: In 29/67 individuals, cES identified clearly pathogenic variants leading to a 43% positive yield. When performed as a first-tier test, cES identified pathogenic variants for 53% of individuals (10/19). Difficult cases were solved including double diagnoses within a kindred or identification of a neurodegeneration with brain iron accumulation in a patient with encephalopathy of suspected mitochondrial origin. CONCLUSION: This study shows that cES is a powerful tool for the daily practice of neurogenetics offering an efficient (43%) and appropriate approach for clinically and genetically complex and heterogeneous disorders.


Assuntos
Exoma , Doenças do Sistema Nervoso , Exoma/genética , Testes Genéticos , Humanos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Fenótipo , Sequenciamento do Exoma
14.
Ann Hum Genet ; 86(4): 171-180, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35141892

RESUMO

It has been estimated that Copy Number Variants (CNVs) account for 10%-20% of patients affected by Developmental Disorder (DD)/Intellectual Disability (ID). Although array comparative genomic hybridization (array-CGH) represents the gold-standard for the detection of genomic imbalances, common Agilent array-CGH 4 × 180 kb arrays fail to detect CNVs smaller than 30 kb. Whole Exome sequencing (WES) is becoming the reference application for the detection of gene variants and makes it possible also to infer genomic imbalances at single exon resolution. However, the contribution of small CNVs in DD/ID is still underinvestigated. We made use of the eXome Hidden Markov Model (XHMM) software, a tool utilized by the ExAC consortium, to detect CNVs from whole exome sequencing data, in a cohort of 200 unsolved DD/DI patients after array-CGH and WES-based single nucleotide/indel variant analyses. In five out of 200 patients (2.5%), we identified pathogenic CNV(s) smaller than 30 kb, ranging from one to six exons. They included two heterozygous deletions in TCF4 and STXBP1 and three homozygous deletions in PPT1, CLCN2, and PIGN. After reverse phenotyping, all variants were reported as causative. This study shows the interest in applying sequencing-based CNV detection, from available WES data, to reduce the diagnostic odyssey of additional patients unsolved DD/DI patients and compare the CNV-detection yield of Agilent array-CGH 4 × 180kb versus whole exome sequencing.


Assuntos
Exoma , Deficiência Intelectual , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Genômica , Humanos , Deficiência Intelectual/genética , Sequenciamento do Exoma
15.
Am J Hum Genet ; 104(6): 1040-1059, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079900

RESUMO

The heterogeneous nuclear ribonucleoprotein (HNRNP) genes code for a set of RNA-binding proteins that function primarily in the spliceosome C complex. Pathogenic variants in these genes can drive neurodegeneration, through a mechanism involving excessive stress-granule formation, or developmental defects, through mechanisms that are not known. Here, we report four unrelated individuals who have truncating or missense variants in the same C-terminal region of hnRNPR and who have multisystem developmental defects including abnormalities of the brain and skeleton, dysmorphic facies, brachydactyly, seizures, and hypoplastic external genitalia. We further identified in the literature a fifth individual with a truncating variant. RNA sequencing of primary fibroblasts reveals that these HNRNPR variants drive significant changes in the expression of several homeobox genes, as well as other transcription factors, such as LHX9, TBX1, and multiple HOX genes, that are considered fundamental regulators of embryonic and gonad development. Higher levels of retained intronic HOX sequences and lost splicing events in the HOX cluster are observed in cells carrying HNRNPR variants, suggesting that impaired splicing is at least partially driving HOX deregulation. At basal levels, stress-granule formation appears normal in primary and transfected cells expressing HNRNPR variants. However, these cells reveal profound recovery defects, where stress granules fail to disassemble properly, after exposure to oxidative stress. This study establishes an essential role for HNRNPR in human development and points to a mechanism that may unify other "spliceosomopathies" linked to variants that drive multi-system congenital defects and are found in hnRNPs.


Assuntos
Deficiências do Desenvolvimento/etiologia , Fibroblastos/patologia , Regulação da Expressão Gênica , Genes Homeobox/genética , Ribonucleoproteínas Nucleares Heterogêneas/genética , Mutação , Splicing de RNA/genética , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Masculino , Estresse Oxidativo , Fenótipo , Sequenciamento do Exoma
18.
J Med Genet ; 58(6): 400-413, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32732226

RESUMO

PURPOSE: Molecular diagnosis based on singleton exome sequencing (sES) is particularly challenging in fetuses with multiple congenital abnormalities (MCA). Indeed, some studies reveal a diagnostic yield of about 20%, far lower than in live birth individuals showing developmental abnormalities (30%), suggesting that standard analyses, based on the correlation between clinical hallmarks described in postnatal syndromic presentations and genotype, may underestimate the impact of the genetic variants identified in fetal analyses. METHODS: We performed sES in 95 fetuses with MCA. Blind to phenotype, we applied a genotype-first approach consisting of combined analyses based on variants annotation and bioinformatics predictions followed by reverse phenotyping. Initially applied to OMIM-morbid genes, analyses were then extended to all genes. We complemented our approach by using reverse phenotyping, variant segregation analysis, bibliographic search and data sharing in order to establish the clinical significance of the prioritised variants. RESULTS: sES rapidly identified causal variant in 24/95 fetuses (25%), variants of unknown significance in OMIM genes in 8/95 fetuses (8%) and six novel candidate genes in 6/95 fetuses (6%). CONCLUSIONS: This method, based on a genotype-first approach followed by reverse phenotyping, shed light on unexpected fetal phenotype-genotype correlations, emphasising the relevance of prenatal studies to reveal extreme clinical presentations associated with well-known Mendelian disorders.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Congênitas/genética , Exoma , Feto/anormalidades , Estudos de Associação Genética , Estudos de Coortes , Exoma/genética , Genótipo , Humanos , Análise de Sequência de DNA
19.
Hum Mutat ; 42(10): 1321-1335, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265170

RESUMO

Hereditary deafness is clinically and genetically heterogeneous. We investigated deafness segregating as a recessive trait in two families. Audiological examinations revealed an asymmetric mild to profound hearing loss with childhood or adolescent onset. Exome sequencing of probands identified a homozygous c.475G>A;p.(Glu159Lys) variant of CLDN9 (NM_020982.4) in one family and a homozygous c.370_372dupATC;p.(Ile124dup) CLDN9 variant in an affected individual of a second family. Claudin 9 (CLDN9) is an integral membrane protein and constituent of epithelial bicellular tight junctions (TJs) that form semipermeable, paracellular barriers between inner ear perilymphatic and endolymphatic compartments. Computational structural modeling predicts that substitution of a lysine for glutamic acid p.(Glu159Lys) alters one of two cis-interactions between CLDN9 protomers. The p.(Ile124dup) variant is predicted to locally misfold CLDN9 and mCherry tagged p.(Ile124dup) CLDN9 is not targeted to the HeLa cell membrane. In situ hybridization shows that mouse Cldn9 expression increases from embryonic to postnatal development and persists in adult inner ears coinciding with prominent CLDN9 immunoreactivity in TJs of epithelia outlining the scala media. Together with the Cldn9 deaf mouse and a homozygous frameshift of CLDN9 previously associated with deafness, the two bi-allelic variants of CLDN9 described here point to CLDN9 as a bona fide human deafness gene.


Assuntos
Claudinas , Surdez , Adolescente , Animais , Criança , Claudinas/genética , Surdez/genética , Células HeLa , Homozigoto , Humanos , Camundongos , Mutação , Linhagem
20.
Hum Mol Genet ; 28(17): 2900-2919, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127942

RESUMO

N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.


Assuntos
Biomarcadores , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Fenótipo , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Biologia Computacional/métodos , Ativação Enzimática , Estabilidade Enzimática , Fácies , Feminino , Loci Gênicos , Testes Genéticos , Genótipo , Humanos , Lactente , Masculino , Modelos Moleculares , Mutação , Acetiltransferase N-Terminal A/química , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/química , Acetiltransferase N-Terminal E/metabolismo , Conformação Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA