Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217308

RESUMO

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Doenças Musculares/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Alelos , Animais , Caenorhabditis elegans , Feminino , Variação Genética , Humanos , Mutação com Perda de Função , Masculino , Músculo Esquelético/patologia , Miofibrilas , Miosinas , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transgenes , Sequenciamento do Exoma , Adulto Jovem
2.
J Med Genet ; 59(11): 1069-1074, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35393337

RESUMO

BACKGROUND: Biallelic pathogenic variants in FXR1 have recently been associated with two congenital myopathy phenotypes: a severe form associated with hypotonia, long bone fractures, respiratory insufficiency and infantile death, and a milder form characterised by proximal muscle weakness with survival into adulthood. OBJECTIVE: We report eight patients from four unrelated families with biallelic pathogenic variants in exon 15 of FXR1. METHODS: Whole exome sequencing was used to detect variants in FXR1. RESULTS: Common clinical features were noted for all patients, which included proximal myopathy, normal serum creatine kinase levels and diffuse muscle atrophy with relative preservation of the quadriceps femoris muscle on muscle imaging. Additionally, some patients with FXR1-related myopathy had respiratory involvement and required bilevel positive airway pressure support. Muscle biopsy showed multi-minicores and type I fibre predominance with internalised nuclei. CONCLUSION: FXR1-related congenital myopathy is an emerging entity that is clinically recognisable. Phenotypic variability associated with variants in FXR1 can result from differences in variant location and type and is also observed between patients homozygous for the same variant, rendering specific genotype-phenotype correlations difficult. Our work broadens the phenotypic spectrum of FXR1-related congenital myopathy.


Assuntos
Doenças Musculares , Humanos , Linhagem , Mutação , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Homozigoto , Creatina Quinase/genética , Proteínas de Ligação a RNA/genética
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768582

RESUMO

PURA-related neurodevelopmental disorders (PURA-NDDs) are a rare genetic disease caused by pathogenic autosomal dominant variants in the PURA gene or a deletion encompassing the PURA gene. PURA-NDD is clinically characterized by neurodevelopmental delay, learning disability, neonatal hypotonia, feeding difficulties, abnormal movements, and epilepsy. It is generally considered to be central nervous system disorders, with generalized weakness, associated hypotonia, cognitive and development deficits in early development, and seizures in late stages. Although it is classified predominantly as a central nervous syndrome disorder, some phenotypic features, such as myopathic facies, respiratory insufficiency of muscle origin, and myopathic features on muscle biopsy and electrodiagnostic evaluation, point to a peripheral (neuromuscular) source of weakness. Patients with PURA-NDD have been increasingly identified in exome-sequenced cohorts of patients with neuromuscular- and congenital myasthenic syndrome-like phenotypes. Recently, fluctuating weakness noted in a PURA-NDD patient, accompanied by repetitive nerve stimulation abnormalities, suggested the disease to be a channelopathy and, more specifically, a neuromuscular junction disorder. Treatment with pyridostigmine or salbutamol led to clinical improvement of neuromuscular function in two reported cases. The goal of this systematic retrospective review is to highlight the motor symptoms of PURA-NDD, to further describe the neuromuscular phenotype, and to emphasize the role of potential treatment opportunities of the neuromuscular phenotype in the setting of the potential role of PURA protein in the neuromuscular junction and the muscles.


Assuntos
Epilepsia , Deficiências da Aprendizagem , Síndromes Miastênicas Congênitas , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Junção Neuromuscular , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Hipotonia Muscular/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769353

RESUMO

As a scientific community we assumed that exome sequencing will elucidate the basis of most heritable diseases. However, it turned out it was not the case; therefore, attention has been increasingly focused on the non-coding sequences that encompass 98% of the genome and may play an important regulatory function. The first WGS-based datasets have already been released including underrepresented populations. Although many databases contain pooled data from several cohorts, recently the importance of local databases has been highlighted. Genomic databases are not only collecting data but may also contribute to better diagnostics and therapies. They may find applications in population studies, rare diseases, oncology, pharmacogenetics, and infectious and inflammatory diseases. Further data may be analysed with Al technologies and in the context of other omics data. To exemplify their utility, we put a highlight on the Polish genome database and its practical application.


Assuntos
Genoma Humano , Medicina , Humanos , Sequenciamento do Exoma , Coleta de Dados , Genômica
5.
Hum Mutat ; 43(10): 1347-1353, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35731190

RESUMO

The investigated intronic CAPN3 variant NM_000070.3:c.1746-20C>G occurs in the Central and Eastern Europe with a frequency of >1% and there are conflicting interpretations on its pathogenicity. We collected data on 14 patients carrying the CAPN3 c.1746-20C>G variant in trans position with another CAPN3 pathogenic/likely pathogenic variant. The patients compound heterozygous for the CAPN3 c.1746-20C>G variant presented a phenotype consistent with calpainopathy of mild/medium severity. This variant is most frequent in the North/West regions of Russia and may originate from that area. Molecular studies revealed that different splicing isoforms are produced in the muscle. We hypothesize that c.1746-20C>G is a hypomorphic variant with a reduction of RNA and protein expression and only individuals having a higher ratio of abnormal isoforms are affected. Reclassification of the CAPN3 variant c.1746-20C>G from variant with a conflicting interpretation of pathogenicity to hypomorphic variant explains many unidentified cases of limb girdle muscular dystrophy R1 calpain 3-related in Eastern and Central Europe.


Assuntos
Calpaína , Proteínas Musculares , Distrofia Muscular do Cíngulo dos Membros , Calpaína/genética , Humanos , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Splicing de RNA
6.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35682950

RESUMO

COVID-19 infections pose a serious global health concern so it is crucial to identify the biomarkers for the susceptibility to and resistance against this disease that could help in a rapid risk assessment and reliable decisions being made on patients' treatment and their potential hospitalisation. Several studies investigated the factors associated with severe COVID-19 outcomes that can be either environmental, population based, or genetic. It was demonstrated that the genetics of the host plays an important role in the various immune responses and, therefore, there are different clinical presentations of COVID-19 infection. In this study, we aimed to use variant descriptive statistics from GWAS (Genome-Wide Association Study) and variant genomic annotations to identify metabolic pathways that are associated with a severe COVID-19 infection as well as pathways related to resistance to COVID-19. For this purpose, we applied a custom-designed mixed linear model implemented into custom-written software. Our analysis of more than 12.5 million SNPs did not indicate any pathway that was significant for a severe COVID-19 infection. However, the Allograft rejection pathway (hsa05330) was significant (p = 0.01087) for resistance to the infection. The majority of the 27 SNP marking genes constituting the Allograft rejection pathway were located on chromosome 6 (19 SNPs) and the remainder were mapped to chromosomes 2, 3, 10, 12, 20, and X. This pathway comprises several immune system components crucial for the self versus non-self recognition, but also the components of antiviral immunity. Our study demonstrated that not only single variants are important for resistance to COVID-19, but also the cumulative impact of several SNPs within the same pathway matters.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Aloenxertos , COVID-19/genética , Predisposição Genética para Doença , Humanos , Imunidade Inata , Polimorfismo de Nucleotídeo Único
7.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955824

RESUMO

Background: Severe outcomes of COVID-19 account for up to 15% of all cases. The study aims to check if any gene variants related to cardiovascular (CVD) and pulmonary diseases (PD) are correlated with a severe outcome of COVID-19 in a Polish cohort of COVID-19 patients. Methods: In this study, a subset of 747 samples from unrelated individuals collected across Poland in 2020 and 2021 was used and whole-genome sequencing was performed. Results: The GWAS analysis of SNPs and short indels located in genes related to CVD identified one variant significant in COVID-19 severe outcome in the HADHA gene, while for the PD gene panel, we found two significant variants in the DRC1 gene. In this study, both potentially protective and risk variants were identified, of which variants in the HADHA gene deserve the most attention. Conclusions: This is the first study reporting the association between the HADHA and DRC1 genetic variants and COVID-19 severe outcome based on the cohort WGS analysis. Although all the identified variants are localised in introns, they may be correlated and therefore inherited along with other risk variants, potentially causative to severe outcome of COVID-19 but not discovered yet.


Assuntos
COVID-19 , Doenças Cardiovasculares , COVID-19/genética , Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla , Humanos , Mutação INDEL , Pulmão , Polimorfismo de Nucleotídeo Único
8.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562925

RESUMO

Although Slavic populations account for over 4.5% of world inhabitants, no centralised, open-source reference database of genetic variation of any Slavic population exists to date. Such data are crucial for clinical genetics, biomedical research, as well as archeological and historical studies. The Polish population, which is homogenous and sedentary in its nature but influenced by many migrations of the past, is unique and could serve as a genetic reference for the Slavic nations. In this study, we analysed whole genomes of 1222 Poles to identify and genotype a wide spectrum of genomic variation, such as small and structural variants, runs of homozygosity, mitochondrial haplogroups, and de novo variants. Common variant analyses showed that the Polish cohort is highly homogenous and shares ancestry with other European populations. In rare variant analyses, we identified 32 autosomal-recessive genes with significantly different frequencies of pathogenic alleles in the Polish population as compared to the non-Finish Europeans, including C2, TGM5, NUP93, C19orf12, and PROP1. The allele frequencies for small and structural variants, calculated for 1076 unrelated individuals, are released publicly as The Thousand Polish Genomes database, and will contribute to the worldwide genomic resources available to researchers and clinicians.


Assuntos
Genética Populacional , Genoma Humano , Alelos , Frequência do Gene , Humanos , Proteínas Mitocondriais , Polônia
9.
Neuropediatrics ; 52(5): 390-393, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33352606

RESUMO

Pur-α protein (PURA) syndrome manifests in early childhood with core features such as neurodevelopmental and speech delay, feeding difficulties, epilepsy, and hypotonia at birth. We identified three cases with PURA syndrome in a cohort of patients with unexplained muscular weakness, presenting with a predominantly neuromuscular and ataxic phenotype. We further characterize the clinical presentation of PURA syndrome including myopathic facies and muscular weakness as the main clinical symptoms in combination with elevated serum creatine kinase levels. Furthermore, we report two novel variants located in the conservative domains PUR-I and PUR-II. For the first time, we present the muscle biopsies of PURA syndrome patients, showing myopathic changes, fiber size variability, and fast fiber atrophy as the key features. PURA syndrome should be taken into consideration as a differential diagnosis in pediatric patients with unexplained muscle weakness.


Assuntos
Epilepsia , Deficiência Intelectual , Doenças Neuromusculares , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Epilepsia/genética , Humanos , Deficiência Intelectual/genética , Doenças Neuromusculares/complicações , Doenças Neuromusculares/diagnóstico , Fatores de Transcrição/genética
10.
Genet Med ; 22(9): 1478-1488, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32528171

RESUMO

PURPOSE: Several hundred genetic muscle diseases have been described, all of which are rare. Their clinical and genetic heterogeneity means that a genetic diagnosis is challenging. We established an international consortium, MYO-SEQ, to aid the work-ups of muscle disease patients and to better understand disease etiology. METHODS: Exome sequencing was applied to 1001 undiagnosed patients recruited from more than 40 neuromuscular disease referral centers; standardized phenotypic information was collected for each patient. Exomes were examined for variants in 429 genes associated with muscle conditions. RESULTS: We identified suspected pathogenic variants in 52% of patients across 87 genes. We detected 401 novel variants, 116 of which were recurrent. Variants in CAPN3, DYSF, ANO5, DMD, RYR1, TTN, COL6A2, and SGCA collectively accounted for over half of the solved cases; while variants in newer disease genes, such as BVES and POGLUT1, were also found. The remaining well-characterized unsolved patients (48%) need further investigation. CONCLUSION: Using our unique infrastructure, we developed a pathway to expedite muscle disease diagnoses. Our data suggest that exome sequencing should be used for pathogenic variant detection in patients with suspected genetic muscle diseases, focusing first on the most common disease genes described here, and subsequently in rarer and newly characterized disease genes.


Assuntos
Exoma , Distrofia Muscular do Cíngulo dos Membros , Anoctaminas , Exoma/genética , Glucosiltransferases , Humanos , Distrofia Muscular do Cíngulo dos Membros/genética , Sequenciamento do Exoma
11.
Neurol Neurochir Pol ; 53(3): 173-180, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31180130

RESUMO

There is an ever-growing need for molecular biomarkers in assessing clinical course and diagnosing neuromuscular disorders, as well as in monitoring drug therapy. With the development of high throughput techniques, there has been an acceleration in the discovery of potential biomarkers. It is quite easy to find potential candidates, but difficult to validate them and translate into a clinical setting. Neuromuscular diseases (NMD) are a major challenge in terms of finding potential molecular biomarkers, mainly because of their heterogeneous aetiology and variability in phenotype, their as yet incompletely understood pathophysiology, and their slow clinical progression. Furthermore, it is challenging to assemble a large cohort of patients, as many NMDs are rare diseases. In this literature review, we provide an update on the latest discoveries in DNA, RNA, miRNA, epigenetic, protein, metabolic and cellular biomarkers for NMD. The advantages and potential difficulties of clinical application and the role of identification of biomarker panels are discussed. We have especially sought to highlight translational biomarkers which can be easily transferred to the clinic, where they may eventually present possible future therapies related to molecular biomarker discoveries.


Assuntos
Doenças Neuromusculares , Biomarcadores , Humanos
12.
Clin Neurophysiol Pract ; 9: 13-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38223850

RESUMO

Objective: Insufficient sleep is linked to several health problems. Previous studies on the effects of sleep deprivation on cortical excitability using conventional transcranial magnetic stimulation (TMS) included a limited number of modalities, and few inter-stimulus intervals (ISIs) and showed conflicting results. This study aimed to investigate the effects of sleep deprivation on cortical excitability through threshold-tracking TMS, using a wide range of protocols at multiple ISIs. Methods: Fifteen healthy subjects (mean age ±â€¯SD: 36 ±â€¯3.34 years) were included. The following tests were performed before and after 24 h of sleep deprivation using semi-automated threshold-tacking TMS protocols: short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) at 11 ISIs between 1 and 30 ms, short interval intracortical facilitation (SICF) at 14 ISIs between 1 and 4.9 ms, long interval intracortical inhibition (LICI) at 6 ISIs between 50 and 300 ms, and short-latency afferent inhibition (SAI) at 12 ISIs between 16 and 30 ms. Results: No significant differences were observed between pre- and post-sleep deprivation measurements for SICI, ICF, SICF, or LICI at any ISIs (p < 0.05). As for SAI, we found a difference at 28 ms (p = 0.007) and 30 ms (p = 0.04) but not at other ISIs. Conclusions: Sleep deprivation does not affect cortical excitability except for SAI. Significance: This study confirms some of the previous studies while contradicting others.

13.
Front Immunol ; 15: 1375433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576614

RESUMO

Oncolytic virus (OV) therapy has emerged as a promising frontier in cancer treatment, especially for solid tumours. While immunotherapies like immune checkpoint inhibitors and CAR-T cells have demonstrated impressive results, their limitations in inducing complete tumour regression have spurred researchers to explore new approaches targeting tumours resistant to current immunotherapies. OVs, both natural and genetically engineered, selectively replicate within cancer cells, inducing their lysis while sparing normal tissues. Recent advancements in clinical research and genetic engineering have enabled the development of targeted viruses that modify the tumour microenvironment, triggering anti-tumour immune responses and exhibiting synergistic effects with other cancer therapies. Several OVs have been studied for breast cancer treatment, including adenovirus, protoparvovirus, vaccinia virus, reovirus, and herpes simplex virus type I (HSV-1). These viruses have been modified or engineered to enhance their tumour-selective replication, reduce toxicity, and improve oncolytic properties.Newer generations of OVs, such as Oncoviron and Delta-24-RGD adenovirus, exhibit heightened replication selectivity and enhanced anticancer effects, particularly in breast cancer models. Clinical trials have explored the efficacy and safety of various OVs in treating different cancers, including melanoma, nasopharyngeal carcinoma, head and neck cancer, and gynecologic malignancies. Notably, Talimogene laherparepvec (T-VEC) and Oncorine have. been approved for advanced melanoma and nasopharyngeal carcinoma, respectively. However, adverse effects have been reported in some cases, including flu-like symptoms and rare instances of severe complications such as fistula formation. Although no OV has been approved specifically for breast cancer treatment, ongoing preclinical clinical trials focus on four groups of viruses. While mild adverse effects like low-grade fever and nausea have been observed, the effectiveness of OV monotherapy in breast cancer remains insufficient. Combination strategies integrating OVs with chemotherapy, radiotherapy, or immunotherapy, show promise in improving therapeutic outcomes. Oncolytic virus therapy holds substantial potential in breast cancer treatment, demonstrating safety in trials. Multi-approach strategies combining OVs with conventional therapies exhibit more promising therapeutic effects than monotherapy, signalling a hopeful future for OV-based breast cancer treatments.


Assuntos
Neoplasias da Mama , Melanoma , Neoplasias Nasofaríngeas , Terapia Viral Oncolítica , Vírus Oncolíticos , Feminino , Humanos , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Melanoma/terapia , Vírus Oncolíticos/genética , Neoplasias da Mama/terapia , Neoplasias da Mama/etiologia , Carcinoma Nasofaríngeo/terapia , Neoplasias Nasofaríngeas/terapia , Microambiente Tumoral
14.
Brain Commun ; 6(4): fcae163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978724

RESUMO

Biallelic expansions of the AAGGG repeat in the replication factor C subunit 1 (RFC1) have recently been described to be responsible for cerebellar ataxia, peripheral neuropathy and vestibular areflexia syndrome. This genetic alteration has also allowed genetic classification in up to one-third of cases with idiopathic sensory neuropathy. Here, we screened a well-characterized cohort of inflammatory neuropathy patients for RFC1 repeat expansions to explore whether RFC1 was increased from background rates and possibly involved in the pathogenesis of inflammatory neuropathy. A total of 259 individuals with inflammatory neuropathy and 243 healthy controls were screened for the AAGGG repeat expansion using short-range flanking PCR and repeat-primed PCR. Cases without amplifiable PCR product on flanking PCR and positive repeat-primed PCR were also tested for the mostly non-pathogenic expansions of the AAAGG and AAAAG repeat units. None of the patients showed biallelic AAGGG expansion of RFC1, and their carrier frequency for AAGGG was comparable with controls [n = 27 (5.2%) and n = 23 (4.7%), respectively; P > 0.5]. Data suggest that the pathologic expansions of AAGGG repeats do not contribute to the development of inflammatory neuropathies nor lead to misdiagnosed cases. Accordingly, routine genetic screening for RFC1 repeat expansion is not indicated in this patient population.

15.
Genes (Basel) ; 14(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37628614

RESUMO

Heterozygous carriers of pathogenic/likely pathogenic variants in autosomal recessive disorders seem to be asymptomatic. However, in recent years, an increasing number of case reports have suggested that mild and unspecific symptoms can occur in some heterozygotes, as symptomatic heterozygotes have been identified across different disease types, including neurological, neuromuscular, hematological, and pulmonary diseases. The symptoms are usually milder in heterozygotes than in biallelic variants and occur "later in life". The status of symptomatic heterozygotes as separate entities is often disputed, and alternative diagnoses are considered. Indeed, often only a thin line exists between dual, dominant, and recessive modes of inheritance and symptomatic heterozygosity. Interestingly, recent population studies have found global disease effects in heterozygous carriers of some genetic variants. What makes the few heterozygotes symptomatic, while the majority show no symptoms? The molecular basis of this phenomenon is still unknown. Possible explanations include undiscovered deep-splicing variants, genetic and environmental modifiers, digenic/oligogenic inheritance, skewed methylation patterns, and mutational burden. Symptomatic heterozygotes are rarely reported in the literature, mainly because most did not undergo the complete diagnostic procedure, so alternative diagnoses could not be conclusively excluded. However, despite the increasing accessibility to high-throughput technologies, there still seems to be a small group of patients with mild symptoms and just one variant of autosomes in biallelic diseases. Here, we present some examples, the current state of knowledge, and possible explanations for this phenomenon, and thus argue against the existing dominant/recessive classification.


Assuntos
Padrões de Herança , Conhecimento , Humanos , Heterozigoto , Herança Multifatorial , Processamento de Proteína Pós-Traducional
16.
J Appl Genet ; 64(1): 135-139, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417168

RESUMO

Spinal muscular atrophy is a severe neuromuscular disorder with an autosomal recessive inheritance pattern. The disease-causing gene is SMN1, and its paralogue, SMN2, is a disease course modifier. Both genes SMN1 and SMN2 show over 99.9% sequence identity and a high rate of crossing over in the genomic region. Due to this reason, SMN1/SMN2 is usually excluded from the whole-genome sequencing (WGS) analysis and investigated with traditional methods, such as MLPA and qPCR. Recently, novel bioinformatic algorithms dedicated to analyzing this particular genomic region have been developed. Here, we analyze the SMN1/SMN2 genomic region with a dedicated program, SMNCopyNumberCaller. We report a similar prevalence of SMN1 gene deletion carrier status (1 per 41 people) to published data from the Polish population (1 per 35 people). Additionally, SMNCopyNumberCaller can identify SMN2 CNVs and SMN2Δ7-8 present in 153 healthy Polish individuals. Two other programs for the CNV analysis in standard genomic regions were not able to provide reliable results. Using WGS-based tools for SMN1/2 genomic region analysis is not only an efficient method in terms of time but will also enable more complex analysis such screening for markers related with a silent carrier status and identification of further genetic modifiers. Although still an experimental method, soon WGS-based SMN1/SMN2 carrier identification may become a standard method for patients screened with WGS for other purposes.


Assuntos
Atrofia Muscular Espinal , Humanos , Polônia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Heterozigoto , Padrões de Herança , Proteína 1 de Sobrevivência do Neurônio Motor/genética
17.
PLoS One ; 18(1): e0279356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662838

RESUMO

Undoubtedly, genetic factors play an important role in susceptibility and resistance to COVID-19. In this study, we conducted the GWAS analysis. Out of 15,489,173 SNPs, we identified 18,191 significant SNPs for severe and 11,799 SNPs for resistant phenotype, showing that a great number of loci were significant in different COVID-19 representations. The majority of variants were synonymous (60.56% for severe, 58.46% for resistant phenotype) or located in introns (55.77% for severe, 59.83% for resistant phenotype). We identified the most significant SNPs for a severe outcome (in AJAP1 intron) and for COVID resistance (in FIG4 intron). We found no missense variants with a potential causal function on resistance to COVID-19; however, two missense variants were determined as significant a severe phenotype (in PM20D1 and LRP4 exons). None of the aforementioned SNPs and missense variants found in this study have been previously associated with COVID-19.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Humanos , COVID-19/genética , Fenótipo , Mutação de Sentido Incorreto , Éxons , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Flavoproteínas/genética , Monoéster Fosfórico Hidrolases/genética
18.
Cancers (Basel) ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36765737

RESUMO

The number of cases of pancreatic cancers in 2019 in Poland was 3852 (approx. 2% of all cancers). The course of the disease is very fast, and the average survival time from the diagnosis is 6 months. Only <2% of patients live for 5 years from the diagnosis, 8% live for 2 years, and almost half live for only about 3 months. A family predisposition to pancreatic cancer occurs in about 10% of cases. Several oncogenes in which somatic changes lead to the development of tumours, including genes BRCA1/2 and PALB2, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1, are involved in pancreatic cancer. Between 4% and 10% of individuals with pancreatic cancer will have a mutation in one of these genes. Six percent of patients with pancreatic cancer have NTRK pathogenic fusion. The pathogenesis of pancreatic cancer can in many cases be characterised by homologous recombination deficiency (HRD)-cell inability to effectively repair DNA. It is estimated that from 24% to as many as 44% of pancreatic cancers show HRD. The most common cause of HRD are inactivating mutations in the genes regulating this DNA repair system, mainly BRCA1 and BRCA2, but also PALB2, RAD51C and several dozen others.

19.
Front Oncol ; 13: 1045817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845707

RESUMO

Introduction: Population-based cancer screening has raised many controversies in recent years, not only regarding the costs but also regarding the ethical nature and issues related to variant interpretation. Nowadays, genetic cancer screening standards are different in every country and usually encompass only individuals with a personal or family history of relevant cancer. Methods: Here we performed a broad genetic screening for cancer-related rare germline variants on population data from the Thousand Polish Genomes database based on 1076 Polish unrelated individuals that underwent whole genome sequencing (WGS). Results: We identified 19 551 rare variants in 806 genes related to oncological diseases, among them 89% have been located in non-coding regions. The combined BRCA1/BRCA2 pathogenic/likely pathogenic according to ClinVar allele frequency in the unselected population of 1076 Poles was 0.42%, corresponding to nine carriers. Discussion: Altogether, on the population level, we found especially problematic the assessment of the pathogenicity of variants and the relation of ACMG guidelines to the population frequency. Some of the variants may be overinterpreted as disease-causing due to their rarity or lack of annotation in the databases. On the other hand, some relevant variants may have been overseen given that there is little pooled population whole genome data on oncology. Before population WGS screening will become a standard, further studies are needed to assess the frequency of the variants suspected to be pathogenic on the population level and with reporting of likely benign variants.

20.
Cells ; 11(6)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35326481

RESUMO

Although neuropsychiatric symptoms (NPS) are common and severely affect older people with cognitive decline, little is known about their underlying molecular mechanisms and relationships with Alzheimer's disease (AD). The aim of this study was to identify and characterize cerebrospinal fluid (CSF) proteome alterations related to NPS. In a longitudinally followed-up cohort of subjects with normal cognition and patients with cognitive impairment (MCI and mild dementia) from a memory clinic setting, we quantified a panel of 790 proteins in CSF using an untargeted shotgun proteomic workflow. Regression models and pathway enrichment analysis were used to investigate protein alterations related to NPS, and to explore relationships with AD pathology and cognitive decline at follow-up visits. Regression analysis selected 27 CSF proteins associated with NPS. These associations were independent of the presence of cerebral AD pathology (defined as CSF p-tau181/Aß1−42 > 0.0779, center cutoff). Gene ontology enrichment showed abundance alterations of proteins related to cell adhesion, immune response, and lipid metabolism, among others, in relation to NPS. Out of the selected proteins, three were associated with accelerated cognitive decline at follow-up visits after controlling for possible confounders. Specific CSF proteome alterations underlying NPS may both represent pathophysiological processes independent from AD and accelerate clinical disease progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/psicologia , Humanos , Testes Neuropsicológicos , Proteoma , Proteômica , Proteínas tau
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA