RESUMO
Currently available small diameter vascular grafts (<6 mm) present several long-term limitations, which has prevented their full clinical implementation. Computational modeling and simulation emerge as tools to study and optimize the rational design of small diameter tissue engineered vascular grafts (TEVG). This study aims to model the correlation between mechanical-hemodynamic-biochemical variables on protein adsorption over TEVG and their regenerative potential. To understand mechanical-hemodynamic variables, two-way Fluid-Structure Interaction (FSI) computational models of novel TEVGs were developed in ANSYS Fluent 2019R3® and ANSYS Transient Structural® software. Experimental pulsatile pressure was included as an UDF into the models. TEVG mechanical properties were obtained from tensile strength tests, under the ISO7198:2016, for novel TEVGs. Subsequently, a kinetic model, linked to previously obtained velocity profiles, of the protein-surface interaction between albumin and fibrinogen, and the intima layer of the TEVGs, was implemented in COMSOL Multiphysics 5.3®. TEVG wall properties appear critical to understand flow and protein adsorption under hemodynamic stimuli. In addition, the kinetic model under flow conditions revealed that size and concentration are the main parameters to trigger protein adsorption on TEVGs. The computational models provide a robust platform to study multiparametrically the performance of TEVGs in terms of protein adsorption and their regenerative potential.
Assuntos
Prótese Vascular , Matriz Extracelular/metabolismo , Adsorção , Animais , Simulação por Computador , Hemodinâmica , Modelos Anatômicos , Modelos Teóricos , Resistência à TraçãoRESUMO
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson's disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson's disease to highlight the main biological pathways that become disrupted in Parkinson's disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative research and potential therapies. Finally, we review the latest developments in CRISPR-based applications and gene therapies to understand and treat Parkinson's disease. We carefully examine their advantages and shortcomings for diverse gene-editing applications in the brain, highlighting promising avenues for future research.
Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Doença de Parkinson/genética , Animais , Sistemas CRISPR-Cas , Humanos , Doença de Parkinson/terapiaRESUMO
We have developed a protocol to produce three-dimensional matrices based on alginate hydrogels for mammalian cell encapsulation. Based on the gelation properties of this polysaccharide, we implemented a calcium ion-based diffusion method where the designed hydrogels can be obtained with well-defined mechanical properties and replicable 3D topologies. The developed protocol can be extended to different types of alginates and an ample range of concentrations. This makes it very attractive for various biomedical applications where strict control over structure-function relationships is desirable.
Assuntos
Alginatos/química , Encapsulamento de Células , Animais , Materiais Biocompatíveis , Hidrogéis , Mamíferos , Relação Estrutura-AtividadeRESUMO
Amphibian skin is a rich source of natural compounds with diverse antimicrobial and immune defense properties. Our previous studies showed that the frog skin secretions obtained by skin micro-organs from various species of Colombian anurans have antimicrobial activities against bacteria and viruses. We purified for the first time two antimicrobial peptides from the skin micro-organs of the Orinoco lime treefrog (Sphaenorhynchus lacteus) that correspond to Buforin II (BF2) and Frenatin 2.3S (F2.3S). Here, we have synthesized the two peptides and tested them against Gram-negative and Gram-positive bacteria, observing an effective bactericidal activity at micromolar concentrations. Evaluation of BF2 and F2.3S membrane destabilization activity on bacterial cell cultures and synthetic lipid bilayers reveals a distinct membrane interaction mechanism. BF2 agglutinates E. coli cells and synthetic vesicles, whereas F2.3S shows a high depolarization and membrane destabilization activities. Interestingly, we found that F2.3S is able to internalize within bacterial cells and can bind nucleic acids, as previously reported for BF2. Moreover, bacterial exposure to both peptides alters the expression profile of genes related to stress and resistance response. Overall, these results show the multifaceted mechanism of action of both antimicrobial peptides that can provide alternative tools in the fight against bacterial resistance.
Assuntos
Proteínas de Anfíbios/farmacologia , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anuros , Proteínas/farmacologia , Proteínas de Anfíbios/química , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Monócitos/efeitos dos fármacos , Proteínas/administração & dosagem , Proteínas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Pele/metabolismo , Staphylococcus aureus/efeitos dos fármacosRESUMO
The emergence of bacterial resistance to antibiotics poses a global health threat, necessitating innovative solutions. The contemporary challenge lies in bacterial resistance, impacting morbidity, mortality, and global economies. Antimicrobial peptides (AMPs) offer a promising avenue for addressing antibiotic resistance. The Antimicrobial Peptide Database catalogs 3569 peptides from various organisms, representing a rich resource for drug development. Histones, traditionally recognized for their role in nucleosome structures, have gained attention for their extracellular functions, including antimicrobial and immunomodulatory properties. This review aims to thoroughly investigate antimicrobial peptides derived from histones in various organisms, elucidating their mechanisms. In addition, it gives us clues about how extracellular histones might be used in drug delivery systems to fight bacterial infections. This comprehensive analysis emphasizes the importance of histone-derived peptides in developing innovative therapeutic strategies for evolving bacterial challenges.
Assuntos
Peptídeos Antimicrobianos , Histonas , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Histonas/metabolismo , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Animais , Sistemas de Liberação de Medicamentos , Farmacorresistência Bacteriana/efeitos dos fármacosRESUMO
Electrical stimulation has emerged as a cornerstone technique in the rapidly evolving field of biomedical engineering, particularly within the realms of tissue engineering and regenerative medicine. It facilitates cell growth, proliferation, and differentiation, thereby advancing the development of accurate tissue models and enhancing drug-testing methodologies. Conductive hydrogels, which enable the conduction of microcurrents in 3D in vitro cultures, are central to this advancement. The integration of high-electroconductive nanomaterials, such as graphene oxide (GO), into hydrogels has revolutionized their mechanical and conductivity properties. Here, we introduce a novel electrostimulation assay utilizing a hybrid hydrogel composed of methacryloyl-modified small intestine submucosa (SIS) dECM (SISMA), chitosan methacrylate (ChiMA), and GO-polyethylene glycol (GO-PEG) in a 3D in vitro culture within a hypoxic environment of umbilical cord blood cells (UCBCs). Results not only demonstrate significant cell proliferation within 3D constructs exposed to microcurrents and early growth factors but also highlight the hybrid hydrogel's physiochemical prowess through comprehensive rheological, morphological, and conductivity analyses. Further experiments will focus on identifying the regulatory pathways of cells subjected to electrical stimulation.
RESUMO
Microfluidic separators play a pivotal role in the biomedical and chemical industries by enabling precise fluid manipulations. Traditional fabrication of these devices typically requires costly cleanroom facilities, which limits their broader application. This study introduces a novel microfluidic device that leverages the passive Zweifach-Fung principle to overcome these financial barriers. Through Lagrangian computational simulations, we optimized an eleven-channel Zweifach-Fung configuration that achieved a perfect 100% recall rate for particles following a specified normal distribution. Experimental evaluations determined 2 mL/h as the optimal total flow rate (TFR), under which the device showcased exceptional performance enhancements in precision and recall for micrometer-sized particles, achieving an overall accuracy of 94% ± 3%. Fabricated using a cost-effective, non-cleanroom method, this approach represents a significant shift from conventional practices, dramatically reducing production costs while maintaining high operational efficacy. The cost of each chip is less than USD 0.90 cents and the manufacturing process takes only 15 min. The development of this device not only makes microfluidic technology more accessible but also sets a new standard for future advancements in the field.
RESUMO
Superparamagnetic iron oxide micro- and nanoparticles have significant applications in biomedical and chemical engineering. This study presents the development and evaluation of a novel low-cost microfluidic device for the purification and hyperconcentration of these magnetic particles. The device, fabricated using laser ablation of polymethyl methacrylate (PMMA), leverages precise control over fluid dynamics to efficiently separate magnetic particles from non-magnetic ones. We assessed the device's performance through Multiphysics simulations and empirical tests, focusing on the separation of magnetite nanoparticles from blue carbon dots and magnetite microparticles from polystyrene microparticles at various total flow rates (TFRs). For nanoparticle separation, the device achieved a recall of up to 93.3 ± 4% and a precision of 95.9 ± 1.2% at an optimal TFR of 2 mL/h, significantly outperforming previous models, which only achieved a 50% recall. Microparticle separation demonstrated an accuracy of 98.1 ± 1% at a TFR of 2 mL/h in both simulations and experimental conditions. The Lagrangian model effectively captured the dynamics of magnetite microparticle separation from polystyrene microparticles, with close agreement between simulated and experimental results. Our findings underscore the device's robust capability in distinguishing between magnetic and non-magnetic particles at both micro- and nanoscales. This study highlights the potential of low-cost, non-cleanroom manufacturing techniques to produce high-performance microfluidic devices, thereby expanding their accessibility and applicability in various industrial and research settings. The integration of a continuous magnet, as opposed to segmented magnets in previous designs, was identified as a key factor in enhancing magnetic separation efficiency.
RESUMO
Introduction: Parkinson's disease (PD) presents a significant challenge in medical science, as current treatments are limited to symptom management and often carry significant side effects. Our study introduces an innovative approach to evaluate the effects of gdnf overexpression mediated by CRISPRa in an in vitro model of Parkinson's disease. The expression of gdnf can have neuroprotective effects, being related to the modulation of neuroinflammation and pathways associated with cell survival, differentiation, and growth. Methods: We have developed a targeted delivery system using a magnetite nanostructured vehicle for the efficient transport of genetic material. This system has resulted in a substantial increase, up to 200-fold) in gdnf expression in an In vitro model of Parkinson's disease using a mixed primary culture of astrocytes, neurons, and microglia. Results and Discussion: The delivery system exhibits significant endosomal escape of more than 56%, crucial for the effective delivery and activation of the genetic material within cells. The increased gdnf expression correlates with a notable reduction in MAO-B complex activity, reaching basal values of 14.8 µU/µg of protein, and a reduction in reactive oxygen species. Additionally, there is up to a 34.6% increase in cell viability in an In vitro Parkinson's disease model treated with the neurotoxin MPTP. Our study shows that increasing gdnf expression can remediate some of the cellular symptoms associated with Parkinson's disease in an in vitro model of the disease using a novel nanostructured delivery system.
RESUMO
Parkinson's disease (PD) is a complex and multifaceted neurodegenerative disorder that results from multiple environmental factors and multicellular interactions. Although several PD neuropathologies have been identified and described, the thorough understanding of PD pathophysiology and research has been largely limited by the absence of reliablein vitromodels that truly recapitulate PD microenvironments. Here, we propose a neuroimmune co-culture system that models PD neuropathologies by combining relevant multicellular interactions with environments that mimic the brain. This system is composed of: (i) 3D bioprinted cultures of mature human dopaminergic (DA) neurons grown on extracellular matrix (ECM)-derived scaffolds doped with electroconductive nanostructures, and (ii) a direct co-culture of human astrocytes and differentiated monocytes that models neuroinflammatory responses. When co-cultured in a transwell format, these two compartments recreate relevant multicellular environments that model PD pathologies after exposure to the neurotoxin A53Tα-synuclein. With immunofluorescent staining and gene expression analyses, we show that functional and mature DA 3D networks are generated within our ECM-derived scaffolds with superior performance to standard 2D cultures. Moreover, by analyzing cytokine secretion, cell surface markers, and gene expression, we define a human monocyte differentiation scheme that allows the appearance of both monocyte-derived macrophages and dendritic cell phenotypes, as well as their optimal co-culture ratios with human astrocytes to recreate synergistic neuroinflammatory responses. We show that the combined response of both compartments to A53Tα-synuclein stimulates the formation of intracellularα-synuclein aggregates, induces progressive mitochondrial dysfunction and reactive oxygen species production, downregulates the expression of synaptic, DA, and mitophagy-related genes, and promotes the initiation of apoptotic processes within the DA networks. Most importantly, these intracellular pathologies were comparable or superior to those generated with a rotenone-stimulated 2D control that represents the current standard forin vitroPD models and showed increased resilience towards these neurotoxic insults, allowing the study of disease progression over longer time periods than current models. Taken together, these results position the proposed model as a superior alternative to current 2D models for generating PD-related pathologiesin vitro.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Técnicas de Cocultura , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Macrófagos , InflamaçãoRESUMO
Wound healing is a complex process involving blood cells, extracellular matrix, and parenchymal cells. Research on biomimetics in amphibian skin has identified the CW49 peptide from Odorrana grahami, which has been demonstrated to promote wound regeneration. Additionally, lavender essential oil exhibits anti-inflammatory and antibacterial activities. Given these considerations, we propose an innovative emulsion that combines the CW49 peptide with lavender oil. This novel formulation could serve as a potent topical treatment, potentially fostering the regeneration of damaged tissues and providing robust antibacterial protection for skin wounds. This study investigates the physicochemical properties, biocompatibility, and in vitro regenerative capacity of the active components and the emulsion. The results show that the emulsion possesses appropriate rheological characteristics for topical application. Both the CW49 peptide and lavender oil exhibit high viability in human keratinocytes, indicating their biocompatibility. The emulsion induces hemolysis and platelet aggregation, an expected behavior for such topical treatments. Furthermore, the lavender-oil emulsion demonstrates antibacterial activity against both Gram-positive and Gram-negative bacterial strains. Finally, the regenerative potential of the emulsion and its active components is confirmed in a 2D wound model using human keratinocytes. In conclusion, the formulated emulsion, which combines the CW49 peptide and lavender oil, shows great promise as a topical treatment for wound healing. Further research is needed to validate these findings in more advanced in vitro models and in vivo settings, potentially leading to improved wound-care management and novel therapeutic options for patients with skin injuries.
RESUMO
Introduction: Thrombogenesis, a major cause of implantable cardiovascular device failure, can be addressed through the use of biodegradable polymers modified with anticoagulating moieties. This study introduces a novel polyester urethane urea (PEUU) functionalized with various anti-platelet deposition molecules for enhanced antiplatelet performance in regenerative cardiovascular devices. Methods: PEUU, synthesized from poly-caprolactone, 1,4-diisocyanatobutane, and putrescine, was chemically oxidized to introduce carboxyl groups, creating PEUU-COOH. This polymer was functionalized in situ with polyethyleneimine, 4-arm polyethylene glycol, seleno-L-cystine, heparin sodium, and fondaparinux. Functionalization was confirmed using Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Bio-compatibility and hemocompatibility were validated through metabolic activity and hemolysis assays. The anti-thrombotic activity was assessed using platelet aggregation, lactate dehydrogenase activation assays, and scanning electron microscopy surface imaging. The whole-blood clotting time quantification assay was employed to evaluate anticoagulation properties. Results: Results demonstrated high biocompatibility and hemocompatibility, with the most potent anti-thrombotic activity observed on pegylated surfaces. However, seleno-L-cystine and fondaparinux exhibited no anti-platelet activity. Discussion: The findings highlight the importance of balancing various factors and addressing challenges associated with different approaches when developing innovative surface modifications for cardiovascular devices.
RESUMO
Although microparticles are frequently used in chemistry and biology, their effectiveness largely depends on the homogeneity of their particle size distribution. Microfluidic devices to separate and purify particles based on their size have been developed, but many require expensive cleanroom manufacturing processes. A cost-effective, passive microfluidic separator is presented, capable of efficiently sorting and purifying particles spanning the size range of 15 µm to 40 µm. Fabricated from Polymethyl Methacrylate (PMMA) substrates using laser ablation, this device circumvents the need for cleanroom facilities. Prior to fabrication, rigorous optimization of the device's design was carried out through computational simulations conducted in COMSOL Multiphysics. To gauge its performance, chitosan microparticles were employed as a test case. The results were notably promising, achieving a precision of 96.14 %. This quantitative metric underscores the device's precision and effectiveness in size-based particle separation. This low-cost and accessible microfluidic separator offers a pragmatic solution for laboratories and researchers seeking precise control over particle sizes, without the constraints of expensive manufacturing environments. This innovation not only mitigates the limitations tied to traditional cleanroom-based fabrication but also widens the horizons for various applications within the realms of chemistry and biology.
RESUMO
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD.
RESUMO
The limited delivery of cargoes at the cellular level is a significant challenge for therapeutic strategies due to the presence of numerous biological barriers. By immobilizing the Buforin II (BUF-II) peptide and the OmpA protein on magnetite nanoparticles, a new family of cell-penetrating nanobioconjugates was developed in a previous study. We propose in this study to extend this strategy to silica nanoparticles (SNPs) and silanized fullerenol (F) as nanostructured supports for conjugating these potent cell-penetrating agents. The same molecule conjugated to distinct nanomaterials may interact with subcellular compartments differently. On the obtained nanobioconjugates (OmpA-SNPs, BUF-II-PEG12-SNPs, OmpA-F, and BUF-II-PEG12-F), physicochemical characterization was performed to evaluate their properties and confirm the conjugation of these translocating agents on the nanomaterials. The biocompatibility, toxicity, and internalization capacity of nanobioconjugates in Vero cells and THP-1 cells were evaluated in vitro. Nanobioconjugates had a high internalization capacity in these cells without affecting their viability, according to the findings. In addition, the nanobioconjugates exhibited negligible hemolytic activity and a low tendency to induce platelet aggregation. In addition, the nanobioconjugates exhibited distinct intracellular trafficking and endosomal escape behavior in these cell lines, indicating their potential for addressing the challenges of cytoplasmic drug delivery and the development of therapeutics for the treatment of lysosomal storage diseases. This study presents an innovative strategy for conjugating cell-penetrating agents using silica nanoparticles and silanized fullerenol as nanostructured supports, which has the potential to enhance the efficacy of cellular drug delivery.
RESUMO
Gene delivery has emerged as a promising alternative to conventional treatment approaches, allowing for the manipulation of gene expression through gene insertion, deletion, or alteration. However, the susceptibility of gene delivery components to degradation and challenges associated with cell penetration necessitate the use of delivery vehicles for effective functional gene delivery. Nanostructured vehicles, such as iron oxide nanoparticles (IONs) including magnetite nanoparticles (MNPs), have demonstrated significant potential for gene delivery applications due to their chemical versatility, biocompatibility, and strong magnetization. In this study, we developed an ION-based delivery vehicle capable of releasing linearized nucleic acids (tDNA) under reducing conditions in various cell cultures. As a proof of concept, we immobilized a CRISPR activation (CRISPRa) sequence to overexpress the pink1 gene on MNPs functionalized with polyethylene glycol (PEG), 3-[(2-aminoethyl)dithio]propionic acid (AEDP), and a translocating protein (OmpA). The nucleic sequence (tDNA) was modified to include a terminal thiol group and was conjugated to AEDP's terminal thiol via a disulfide exchange reaction. Leveraging the natural sensitivity of the disulfide bridge, the cargo was released under reducing conditions. Physicochemical characterizations, including thermogravimetric analysis (TGA) and Fourier-transform infrared (FTIR) spectroscopy, confirmed the correct synthesis and functionalization of the MNP-based delivery carriers. The developed nanocarriers exhibited remarkable biocompatibility, as demonstrated by the hemocompatibility, platelet aggregation, and cytocompatibility assays using primary human astrocytes, rodent astrocytes, and human fibroblast cells. Furthermore, the nanocarriers enabled efficient cargo penetration, uptake, and endosomal escape, with minimal nucleofection. A preliminary functionality test using RT-qPCR revealed that the vehicle facilitated the timely release of CRISPRa vectors, resulting in a remarkable 130-fold overexpression of pink1. We demonstrate the potential of the developed ION-based nanocarrier as a versatile and promising gene delivery vehicle with potential applications in gene therapy. The developed nanocarrier is capable of delivering any nucleic sequence (up to 8.2 kb) once it is thiolated using the methodology explained in this study. To our knowledge, this represents the first MNP-based nanocarrier capable of delivering nucleic sequences under specific reducing conditions while preserving functionality.
RESUMO
Over the past decades, Colombia has suffered complex social problems related to illicit crops, including forced displacement, violence, and environmental damage, among other consequences for vulnerable populations. Considerable effort has been made in the regulation of illicit crops, predominantly Cannabis sativa, leading to advances such as the legalization of medical cannabis and its derivatives, the improvement of crops, and leaving an open window to the development of scientific knowledge to explore alternative uses. It is estimated that C. sativa can produce approximately 750 specialized secondary metabolites. Some of the most relevant due to their anticancer properties, besides cannabinoids, are monoterpenes, sesquiterpenoids, triterpenoids, essential oils, flavonoids, and phenolic compounds. However, despite the increase in scientific research on the subject, it is necessary to study the primary and secondary metabolism of the plant and to identify key pathways that explore its great metabolic potential. For this purpose, a genome-scale metabolic reconstruction of C. sativa is described and contextualized using LC-QTOF-MS metabolic data obtained from the leaf extract from plants grown in the region of Pesca-Boyaca, Colombia under greenhouse conditions at the Clever Leaves facility. A compartmentalized model with 2101 reactions and 1314 metabolites highlights pathways associated with fatty acid biosynthesis, steroids, and amino acids, along with the metabolism of purine, pyrimidine, glucose, starch, and sucrose. Key metabolites were identified through metabolomic data, such as neurine, cannabisativine, cannflavin A, palmitoleic acid, cannabinoids, geranylhydroquinone, and steroids. They were analyzed and integrated into the reconstruction, and their potential applications are discussed. Cytotoxicity assays revealed high anticancer activity against gastric adenocarcinoma (AGS), melanoma cells (A375), and lung carcinoma cells (A549), combined with negligible impact against healthy human skin cells.
RESUMO
The development of novel regenerative technologies based on the implementation of natural extracellular matrix (ECM), or individual components of ECM combined with multifunctional nanomaterials such as graphene oxide and reduced graphene oxide, has demonstrated remarkable results in wound healing and tissue engineering. However, the synthesis of these nanocomposites involves great challenges related to maintaining the biocompatibility with a simultaneous improvement in their functionalities. Based on that, in this research we developed novel nanoengineered ECM-scaffolds formed by mixing small intestinal submucosa (SIS) with graphene oxide (GO)/reduced graphene oxide (rGO) to improve electrical conductivity while maintaining remarkable biocompatibility. For this, decellularized SIS was combined with GO to form the scaffold precursor for subsequent lyophilization, chemically crosslinking and in situ reduction. The obtained GO and rGO were characterized via Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), electrical conductivity testing and atomic force microscopy (AFM). The results confirm the suitable synthesis of GO, the effective reduction to rGO and the significant increase in the electrical conductivity (more than four orders of magnitude higher than bare GO). In addition, the graphene oxide/reduced graphene oxide-SIS scaffolds were characterized via Raman spectroscopy, FTIR, TGA, SEM, porosity assay (higher than 97.5% in all cases) and protein secondary structural analysis. Moreover, the biocompatibility of scaffolds was studied by standardized assays of hemolysis activity (less than 0.5%), platelet activation and deposition, and cell viability in Vero, HaCat and HFF-1 cells (higher than 90% for all evaluated cell lines on the different scaffolds). The obtained results confirm the remarkable biocompatibility, as supported by high hemocompatibility, low cytotoxicity and no negative impact on platelet activation and deposition. Finally, structural characteristics such as pore size and interconnectivity as well as superior cell attachment abilities also corroborated the potential of the developed nanoengineered ECM-scaffolds as a multifunctional nanoplatform for application in regenerative medicine and tissue engineering.
RESUMO
Plant-derived products have gained considerable attention as inflammation modulators given the wide variety of anti-inflammatory phytochemicals reported to be present in plants and their limited side effects in vivo during prolonged exposure periods. Non-centrifugal cane sugar (NCS) has been identified as a promising sugarcane-derived product due to its high polyphenolic composition and antioxidant potential, but its incorporations into nutraceuticals and other relevant products of biomedical interest has been limited by the ample composition-wise variability resulting from extreme and loosely controlled processing conditions. Here, we assessed the effect of reducing thermal exposure during NCS processing on the retained polyphenolic profiles, as well as on their antioxidant and anti-inflammatory activities. Specifically, we proposed two modified NCS production methods that reduce exposure to unwanted thermal processing conditions by 1) limiting the employed temperatures through vacuum-aided dehydration and 2) by reducing exposure time through refractance window evaporation. By comparing the modified NCS products with traditional NCS, we showed that the proposed process strategies yield enhanced polyphenolic profiles, as evidenced by the results of the Folin-Ciocalteu polyphenol quantification method and the components identification by HPLC coupled to mass spectrometry. Although these compositional differences failed to impact the antioxidant profiles and cytocompatibility of the products, they showed an enhanced anti-inflammatory potential, given their superior modulation capacity of inflammatory cytokine secretion in both systemic and neuroinflammatory scenarios in vitro. Moreover, we showed that both modified NCS products interfere with TLR4 signaling in human monocytes to a significantly greater extent than traditional NCS. However, the anti-inflammatory effect of NCS produced under window refractance evaporation was slightly superior than under vacuum-aided dehydration, demonstrating that reducing exposure time to high temperatures is likely more effective than reducing the operation temperature. Overall, these findings demonstrated that limiting thermal exposure is beneficial for the development of NCS-based natural products with superior anti-inflammatory potential, which can be further exploited in the rational design of more potent nutraceuticals for potentially preventing chronic inflammatory diseases.
RESUMO
Antibiotic resistance is a worldwide public health problem due to the costs and mortality rates it generates. However, the large pharmaceutical industries have stopped searching for new antibiotics because of their low profitability, given the rapid replacement rates imposed by the increasingly observed resistance acquired by microorganisms. Alternatively, antimicrobial peptides (AMPs) have emerged as potent molecules with a much lower rate of resistance generation. The discovery of these peptides is carried out through extensive in vitro screenings of either rational or non-rational libraries. These processes are tedious and expensive and generate only a few AMP candidates, most of which fail to show the required activity and physicochemical properties for practical applications. This work proposes implementing an artificial intelligence algorithm to reduce the required experimentation and increase the efficiency of high-activity AMP discovery. Our deep learning (DL) model, called AMPs-Net, outperforms the state-of-the-art method by 8.8% in average precision. Furthermore, it is highly accurate to predict the antibacterial and antiviral capacity of a large number of AMPs. Our search led to identifying two unreported antimicrobial motifs and two novel antimicrobial peptides related to them. Moreover, by coupling DL with molecular dynamics (MD) simulations, we were able to find a multifunctional peptide with promising therapeutic effects. Our work validates our previously proposed pipeline for a more efficient rational discovery of novel AMPs.