Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 13(5): 490-504, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38387006

RESUMO

Regenerative cell therapy to replenish the missing neurons and glia in the aganglionic segment of Hirschsprung disease represents a promising treatment option. However, the success of cell therapies for this condition are hindered by poor migration of the transplanted cells. This limitation is in part due to a markedly less permissive extracellular environment in the postnatal gut than that of the embryo. Coordinated interactions between enteric neural crest-derived cells (ENCDCs) and their local environment drive migration along the embryonic gut during development of the enteric nervous system. Modifying transplanted cells, or the postnatal extracellular environment, to better recapitulate embryonic ENCDC migration could be leveraged to improve the engraftment and coverage of stem cell transplants. We compared the transcriptomes of ENCDCs from the embryonic intestine to that of postnatal-derived neurospheres and identified 89 extracellular matrix (ECM)-associated genes that are differentially expressed. Agrin, a heparin sulfate proteoglycan with a known inhibitory effect on ENCDC migration, was highly over-expressed by postnatal-derived neurospheres. Using a function-blocking antibody and a shRNA-expressing lentivirus, we show that inhibiting agrin promotes ENCDC migration in vitro and following cell transplantation ex vivo and in vivo. This enhanced migration is associated with an increased proportion of GFAP + cells, whose migration is especially enhanced.


Assuntos
Agrina , Movimento Celular , Células-Tronco Neurais , Animais , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Camundongos , Agrina/metabolismo , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/citologia , Colo/metabolismo , Colo/citologia , Crista Neural/metabolismo , Crista Neural/citologia , Doença de Hirschsprung/metabolismo , Doença de Hirschsprung/terapia , Transplante de Células-Tronco/métodos
2.
Neuron ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39019043

RESUMO

Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.

3.
Inflamm Bowel Dis ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102823

RESUMO

BACKGROUND: Immune cell populations in the intestinal muscularis propria during colitis are poorly resolved. Maintaining homeostasis in this niche is critical, highlighted by the poorer prognosis of inflammatory bowel disease associated with muscularis propria inflammation. METHODS: This study utilizes single-cell RNA sequencing to survey the immune cell populations within the muscularis propria of normal colon and dextran sodium sulfate-induced colitis. Findings are validated by immunohistochemistry, flow cytometry and cell-lineage tracing in vivo, and in vitro assays with muscularis macrophages (MMφ). RESULTS: In naïve conditions, transcriptional duality is observed in MMφs with 2 major subpopulations: conventional resident Cx3cr1+ MMφs and Lyve1+ MMφs. The Lyve1+ population is phagocytic and expresses several known MMφ markers in mouse and human, confirming their identity as a bona fide MMφ subset. Single-cell transcriptomics indicate that resident MMφs are retained during colitis and exhibit plasticity toward an inflammatory profile. Lyve1+ MMφs, which express anti-inflammatory marker CD163, are absent during colitis, as confirmed by flow cytometry. In contrast, lineage tracing finds that resident Cx3cr1+ MMφs remain during colitis and are not completely replaced by the inflammatory infiltrating monocytes. In vitro studies provide biological evidence of the plasticity of resident Cx3cr1+ MMφs in response to lipopolysaccharide (LPS), mirroring transcriptional observations in vivo of their inflammatory plasticity. Potential markers for colitic MMφs, validated in animal models and in individuals with ulcerative colitis, are identified. CONCLUSIONS: Our findings contribute to the understanding of the immune system in the muscularis propria niche during colitis by resolving the heterogeneity and origins of colitic MMφs.


Involvement of the muscularis propria accompanies a poorer prognosis in IBD. This study characterizes muscularis macrophage subpopulations during colitis, highlighting the loss of anti-inflammatory LYVE-1+ macrophages and inflammatory plasticity in resident CX3CR1+ macrophages, providing insights into prognostic and therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA