Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Pathol ; 261(2): 139-155, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555362

RESUMO

Within the pancreas, Keratin 19 (KRT19) labels the ductal lineage and is a determinant of pancreatic ductal adenocarcinoma (PDAC). To investigate KRT19 expression dynamics, we developed a human pluripotent stem cell (PSC)-based KRT19-mCherry reporter system in different genetic backgrounds to monitor KRT19 expression from its endogenous gene locus. A differentiation protocol to generate mature pancreatic duct-like organoids was applied. While KRT19/mCherry expression became evident at the early endoderm stage, mCherry signal was present in nearly all cells at the pancreatic endoderm (PE) and pancreatic progenitor (PP) stages. Interestingly, despite homogenous KRT19 expression, mCherry positivity dropped to 50% after ductal maturation, indicating a permanent switch from biallelic to monoallelic expression. DNA methylation profiling separated the distinct differentiation intermediates, with site-specific DNA methylation patterns occurring at the KRT19 locus during ductal maturation. Accordingly, the monoallelic switch was partially reverted upon treatment with a DNA-methyltransferase inhibitor. In human PDAC cohorts, high KRT19 levels correlate with low locus methylation and decreased survival. At the same time, activation of oncogenic KRASG12D signalling in our reporter system reversed monoallelic back to biallelic KRT19 expression in pancreatic duct-like organoids. Allelic reactivation was also detected in single-cell transcriptomes of human PDACs, which further revealed a positive correlation between KRT19 and KRAS expression. Accordingly, KRAS mutant PDACs had higher KRT19 mRNA but lower KRT19 gene locus DNA methylation than wildtype counterparts. KRT19 protein was additionally detected in plasma of PDAC patients, with higher concentrations correlating with shorter progression-free survival in gemcitabine/nabPaclitaxel-treated and opposing trends in FOLFIRINOX-treated patients. Apart from being an important pancreatic ductal lineage marker, KRT19 appears tightly controlled via a switch from biallelic to monoallelic expression during ductal lineage entry and is aberrantly expressed after oncogenic KRASG12D expression, indicating a role in PDAC development and malignancy. Soluble KRT19 might serve as a relevant biomarker to stratify treatment. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica , Queratina-19/genética , Queratina-19/metabolismo , Metilação de DNA , Proteínas Proto-Oncogênicas p21(ras)/genética , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Expressão Gênica , Neoplasias Pancreáticas
2.
Brain ; 146(9): 3770-3782, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883643

RESUMO

Amyotrophic lateral sclerosis is a fatal and incurable neurodegenerative disease that mainly affects the neurons of the motor system. Despite the increasing understanding of its genetic components, their biological meanings are still poorly understood. Indeed, it is still not clear to which extent the pathological features associated with amyotrophic lateral sclerosis are commonly shared by the different genes causally linked to this disorder. To address this point, we combined multiomics analysis covering the transcriptional, epigenetic and mutational aspects of heterogenous human induced pluripotent stem cell-derived C9orf72-, TARDBP-, SOD1- and FUS-mutant motor neurons as well as datasets from patients' biopsies. We identified a common signature, converging towards increased stress and synaptic abnormalities, which reflects a unifying transcriptional program in amyotrophic lateral sclerosis despite the specific profiles due to the underlying pathogenic gene. In addition, whole genome bisulphite sequencing linked the altered gene expression observed in mutant cells to their methylation profile, highlighting deep epigenetic alterations as part of the abnormal transcriptional signatures linked to amyotrophic lateral sclerosis. We then applied multi-layer deep machine-learning to integrate publicly available blood and spinal cord transcriptomes and found a statistically significant correlation between their top predictor gene sets, which were significantly enriched in toll-like receptor signalling. Notably, the overrepresentation of this biological term also correlated with the transcriptional signature identified in mutant human induced pluripotent stem cell-derived motor neurons, highlighting novel insights into amyotrophic lateral sclerosis marker genes in a tissue-independent manner. Finally, using whole genome sequencing in combination with deep learning, we generated the first mutational signature for amyotrophic lateral sclerosis and defined a specific genomic profile for this disease, which is significantly correlated to ageing signatures, hinting at age as a major player in amyotrophic lateral sclerosis. This work describes innovative methodological approaches for the identification of disease signatures through the combination of multiomics analysis and provides novel knowledge on the pathological convergencies defining amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Multiômica , Doenças Neurodegenerativas/metabolismo , Proteína C9orf72/genética , Superóxido Dismutase-1/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo
3.
Cell Mol Life Sci ; 80(5): 131, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095391

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a complex and incurable neurodegenerative disorder in which genetic and epigenetic factors contribute to the pathogenesis of all forms of ALS. The interplay of genetic predisposition and environmental footprints generates epigenetic signatures in the cells of affected tissues, which then alter transcriptional programs. Epigenetic modifications that arise from genetic predisposition and systemic environmental footprints should in theory be detectable not only in affected CNS tissue but also in the periphery. Here, we identify an ALS-associated epigenetic signature ('epiChromALS') by chromatin accessibility analysis of blood cells of ALS patients. In contrast to the blood transcriptome signature, epiChromALS includes also genes that are not expressed in blood cells; it is enriched in CNS neuronal pathways and it is present in the ALS motor cortex. By combining simultaneous ATAC-seq and RNA-seq with single-cell sequencing in PBMCs and motor cortex from ALS patients, we demonstrate that epigenetic changes associated with the neurodegenerative disease can be found in the periphery, thus strongly suggesting a mechanistic link between the epigenetic regulation and disease pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Epigênese Genética , Cromatina , Predisposição Genética para Doença , Doenças Neurodegenerativas/genética , Células Sanguíneas/metabolismo , Células Sanguíneas/patologia
4.
BMC Biol ; 21(1): 55, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941669

RESUMO

BACKGROUND: The reactivation of genetic programs from early development is a common mechanism for injury-induced organ regeneration. T-box 3 (TBX3) is a member of the T-box family of transcription factors previously shown to regulate pluripotency and subsequent lineage commitment in a number of tissues, including limb and lung. TBX3 is also involved in lung and heart organogenesis. Here, we provide a comprehensive and thorough characterization of TBX3 and its role during pancreatic organogenesis and regeneration. RESULTS: We interrogated the level and cell specificity of TBX3 in the developing and adult pancreas at mRNA and protein levels at multiple developmental stages in mouse and human pancreas. We employed conditional mutagenesis to determine its role in murine pancreatic development and in regeneration after the induction of acute pancreatitis. We found that Tbx3 is dynamically expressed in the pancreatic mesenchyme and epithelium. While Tbx3 is expressed in the developing pancreas, its absence is likely compensated by other factors after ablation from either the mesenchymal or epithelial compartments. In an adult model of acute pancreatitis, we found that a lack of Tbx3 resulted in increased proliferation and fibrosis as well as an enhanced inflammatory gene programs, indicating that Tbx3 has a role in tissue homeostasis and regeneration. CONCLUSIONS: TBX3 demonstrates dynamic expression patterns in the pancreas. Although TBX3 is dispensable for proper pancreatic development, its absence leads to altered organ regeneration after induction of acute pancreatitis.


Assuntos
Pancreatite , Adulto , Humanos , Animais , Camundongos , Doença Aguda , Pancreatite/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Pâncreas/metabolismo , Organogênese/genética
5.
Dev Biol ; 471: 106-118, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309949

RESUMO

Adult zebrafish are frequently described to be able to "completely" regenerate the heart. Yet, the extent to which cardiomyocytes lost to injury are replaced is unknown, since existing evidence for cardiomyocyte proliferation is indirect or non-quantitative. We established stereological methods to quantify the number of cardiomyocytes at several time-points post cryoinjury. Intriguingly, after cryoinjuries that killed about 1/3 of the ventricular cardiomyocytes, pre-injury cardiomyocyte numbers were restored already within 30 days. Yet, many hearts retained small residual scars, and a subset of cardiomyocytes bordering these fibrotic areas remained smaller, lacked differentiated sarcomeric structures, and displayed defective calcium signaling. Thus, a subset of regenerated cardiomyocytes failed to fully mature. While lineage-tracing experiments have shown that regenerating cardiomyocytes are derived from differentiated cardiomyocytes, technical limitations have previously made it impossible to test whether cardiomyocyte trans-differentiation contributes to regeneration of non-myocyte cell lineages. Using Cre responder lines that are expressed in all major cell types of the heart, we found no evidence for cardiomyocyte transdifferentiation into endothelial, epicardial, fibroblast or immune cell lineages. Overall, our results imply a refined answer to the question whether zebrafish can completely regenerate the heart: in response to cryoinjury, preinjury cardiomyocyte numbers are indeed completely regenerated by proliferation of lineage-restricted cardiomyocytes, while restoration of cardiomyocyte differentiation and function, as well as resorption of scar tissue, is less robustly achieved.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração , Peixe-Zebra/metabolismo , Animais , Fibrose , Miocárdio/patologia , Miócitos Cardíacos/patologia
6.
J Cell Sci ; 133(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31964708

RESUMO

Owing to the local enrichment of factors that influence its dynamics and organization, the actin cytoskeleton displays different shapes and functions within the same cell. In yeast cells, post-Golgi vesicles ride on long actin cables to the bud tip. The proteins Boi1 and Boi2 (Boi1/2) participate in tethering and docking these vesicles to the plasma membrane. Here, we show in Saccharomyces cerevisiae that Boi1/2 also recruit nucleation and elongation factors to form actin filaments at sites of exocytosis. Disrupting the connection between Boi1/2 and the nucleation factor Bud6 impairs filament formation, reduces the directed movement of the vesicles to the tip and shortens the vesicles' tethering time at the cortex. Transplanting Boi1 from the bud tip to the peroxisomal membrane partially redirects the actin cytoskeleton and the vesicular flow towards the peroxisome, and creates an alternative, rudimentary vesicle-docking zone. We conclude that Boi1/2, through interactions with Bud6 and Bni1, induce the formation of a cortical actin structure that receives and aligns incoming vesicles before fusion with the membrane.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Polaridade Celular , Exocitose , Proteínas dos Microfilamentos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Cell Sci ; 133(11)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32327559

RESUMO

Yeast cells select the position of their new bud at the beginning of each cell cycle. The recruitment of septins to this prospective bud site is one of the critical events in a complex assembly pathway that culminates in the outgrowth of a new daughter cell. During recruitment, septin rods follow the high concentration of Cdc42GTP that is generated by the focused localization of the Cdc42 guanine-nucleotide-exchange factor Cdc24. We show that, shortly before budding, Cdc24 not only activates Cdc42 but also transiently interacts with Cdc11, the septin subunit that caps both ends of the septin rods. Mutations in Cdc24 that reduce affinity to Cdc11 impair septin recruitment and decrease the stability of the polarity patch. The interaction between septins and Cdc24 thus reinforces bud assembly at sites where septin structures are formed. Once the septins polymerize to form the septin ring, Cdc24 is found at the cortex of the bud and directs further outgrowth from this position.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Retroalimentação , Fatores de Troca do Nucleotídeo Guanina , Estudos Prospectivos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Septinas/genética , Septinas/metabolismo
8.
PLoS Biol ; 16(9): e2003389, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30235201

RESUMO

Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain homeostasis. With aging, the frequency of polar HSCs decreases. Cell polarity in HSCs is controlled by the activity of the small RhoGTPase cell division control protein 42 (Cdc42). Here we demonstrate-using a comprehensive set of paired daughter cell analyses that include single-cell 3D confocal imaging, single-cell transplants, single-cell RNA-seq, and single-cell transposase-accessible chromatin sequencing (ATAC-seq)-that the outcome of HSC divisions is strongly linked to the polarity status before mitosis, which is in turn determined by the level of the activity Cdc42 in stem cells. Aged apolar HSCs undergo preferentially self-renewing symmetric divisions, resulting in daughter stem cells with reduced regenerative capacity and lymphoid potential, while young polar HSCs undergo preferentially asymmetric divisions. Mathematical modeling in combination with experimental data implies a mechanistic role of the asymmetric sorting of Cdc42 in determining the potential of daughter cells via epigenetic mechanisms. Therefore, molecules that control HSC polarity might serve as modulators of the mode of stem cell division regulating the potential of daughter cells.


Assuntos
Divisão Celular/genética , Senescência Celular/genética , Epigênese Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Envelhecimento/metabolismo , Animais , Divisão Celular Assimétrica/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Agregação Celular , Linhagem da Célula/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Cromatina , Camundongos Endogâmicos C57BL , Transcriptoma/genética , Proteína Wnt-5a/farmacologia , Proteína cdc42 de Ligação ao GTP/metabolismo
9.
Blood ; 132(6): 565-576, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-29891535

RESUMO

Aging-associated remodeling of the immune system impairs its functional integrity and contributes to increased morbidity and mortality in the elderly. Aging of hematopoietic stem cells (HSCs), from which all cells of the adaptive immune system ultimately originate, might play a crucial role in the remodeling of the aged immune system. We recently reported that aging of HSCs is, in part, driven by elevated activity of the small RhoGTPase Cdc42 and that aged HSCs can be rejuvenated in vitro by inhibition of the elevated Cdc42 activity in aged HSCs with the pharmacological compound CASIN. To study the quality of immune systems stemming selectively from young or aged HSCs, we established a HSC transplantation model in T- and B-cell-deficient young RAG1-/- hosts. We report that both phenotypic and functional changes in the immune system on aging are primarily a consequence of changes in the function of HSCs on aging and, to a large extent, independent of the thymus, as young and aged HSCs reconstituted distinct T- and B-cell subsets in RAG1-/- hosts that mirrored young and aged immune systems. Importantly, aged HSCs treated with CASIN reestablished an immune system similar to that of young animals, and thus capable of mounting a strong immune response to vaccination. Our studies further imply that epigenetic signatures already imprinted in aged HSCs determine the transcriptional profile and function of HSC-derived T and B cells.


Assuntos
Envelhecimento/imunologia , Senescência Celular/imunologia , Células-Tronco Hematopoéticas/imunologia , Subpopulações de Linfócitos/imunologia , Animais , Proteínas do Citoesqueleto , Feminino , Perfilação da Expressão Gênica , Genes RAG-1 , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Subpopulações de Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doadores de Tecidos , Vacinação , Vacinas de DNA/imunologia , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/fisiologia
10.
Blood ; 129(3): 319-323, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-27827825

RESUMO

There is high interest in understanding the mechanisms that drive self-renewal of stem cells. HOXB4 is one of the few transcription factors that can amplify long-term repopulating hematopoietic stem cells in a controlled way. Here we show in mice that this characteristic of HOXB4 depends on a proline-rich sequence near the N terminus, which is unique among HOX genes and highly conserved in higher mammals. Deletion of this domain substantially enhanced the oncogenicity of HOXB4, inducing acute leukemia in mice. Conversely, insertion of the domain into Hoxa9 impaired leukemogenicity of this homeobox gene. These results indicate that proline-rich stretches attenuate the potential of stem cell active homeobox genes to acquire oncogenic properties.


Assuntos
Autorrenovação Celular , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/fisiologia , Leucemia/etiologia , Fatores de Transcrição/fisiologia , Doença Aguda , Animais , Carcinógenos , Proteínas de Homeodomínio/genética , Camundongos , Prolina , Análise de Sequência de Proteína , Fatores de Transcrição/genética
12.
Cell Death Dis ; 15(8): 560, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097602

RESUMO

Spinal motor neurons (MNs) represent a highly vulnerable cellular population, which is affected in fatal neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). In this study, we show that the heterozygous loss of SYT13 is sufficient to trigger a neurodegenerative phenotype resembling those observed in ALS and SMA. SYT13+/- hiPSC-derived MNs displayed a progressive manifestation of typical neurodegenerative hallmarks such as loss of synaptic contacts and accumulation of aberrant aggregates. Moreover, analysis of the SYT13+/- transcriptome revealed a significant impairment in biological mechanisms involved in motoneuron specification and spinal cord differentiation. This transcriptional portrait also strikingly correlated with ALS signatures, displaying a significant convergence toward the expression of pro-apoptotic and pro-inflammatory genes, which are controlled by the transcription factor TP53. Our data show for the first time that the heterozygous loss of a single member of the synaptotagmin family, SYT13, is sufficient to trigger a series of abnormal alterations leading to MN sufferance, thus revealing novel insights into the selective vulnerability of this cell population.


Assuntos
Esclerose Lateral Amiotrófica , Neurônios Motores , Sinaptotagminas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Sinaptotagminas/metabolismo , Sinaptotagminas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Heterozigoto , Fenótipo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Diferenciação Celular/genética , Técnicas de Inativação de Genes
13.
Chromosome Res ; 20(6): 735-52, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23053570

RESUMO

A nonrandom radial nuclear organization of genes has been well documented. This study provides further evidence that radial positioning depends on features of corresponding ∼1 Mbp chromatin domains (CDs), which represent the basic units of higher-order chromatin organization. We performed a quantitative three-dimensional analysis of the radial nuclear organization of three genes located on chromosome 1 in a DG75 Burkitt lymphoma-derived cell line. Quantitative real-time polymerase chain reaction revealed similar transcription levels for the three selected genes, whereas the total expression strength (TES) calculated as the sum of transcription of all genes annotated within a surrounding window of about 1 Mbp DNA differed for each region. Radial nuclear position of the studied CDs correlated with TES, i.e., the domain with the highest TES occupied the most interior position. Positions of CDs with stable TES values were stably maintained even under experimental conditions, resulting in genome-wide changes of the expression levels of many other genes. Our results strongly support the hypothesis that knowledge of the local chromatin environment is essential to predict the radial nuclear position of a gene.


Assuntos
Núcleo Celular/ultraestrutura , Montagem e Desmontagem da Cromatina/genética , Cromossomos Humanos Par 1/genética , Expressão Gênica , Genes/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Imageamento Tridimensional , Hibridização in Situ Fluorescente , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Proc Natl Acad Sci U S A ; 107(39): 16946-51, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20833819

RESUMO

Recent data indicate that a variety of regulatory molecules active in embryonic development may also play a role in the regulation of early hematopoiesis. Here we report that the human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus xvent2 gene, is a unique regulatory hematopoietic gene that is aberrantly expressed in CD34(+) leukemic stem-cell candidates in human acute myeloid leukemia (AML). Quantitative RT-PCR documented expression of the gene in lineage positive hematopoietic subpopulations, with the highest expression in CD33(+) myeloid cells. Notably, expression levels of VENTX were negligible in normal CD34(+)/CD38(-) or CD34(+) human progenitor cells. In contrast to this, leukemic CD34(+)/CD38(-) cells from AML patients with translocation t(8,21) and normal karyotype displayed aberrantly high expression of VENTX. Gene expression and pathway analysis demonstrated that in normal CD34(+) cells enforced expression of VENTX initiates genes associated with myeloid development and down-regulates genes involved in early lymphoid development. Functional analyses confirmed that aberrant expression of VENTX in normal CD34(+) human progenitor cells perturbs normal hematopoietic development, promoting generation of myeloid cells and impairing generation of lymphoid cells in vitro and in vivo. Stable knockdown of VENTX expression inhibited the proliferation of human AML cell lines. Taken together, these data extend our insights into the function of embryonic mesodermal factors in human postnatal hematopoiesis and indicate a role for VENTX in normal and malignant myelopoiesis.


Assuntos
Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Leucemia Mieloide Aguda/metabolismo , Células Mieloides/citologia , Mielopoese/genética , Técnicas de Cocultura , Células Eritroides/citologia , Células Eritroides/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Células Mieloides/metabolismo
15.
Front Cell Dev Biol ; 11: 1243299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745298

RESUMO

Phelan-McDermid syndrome (PMS) is a syndromic form of Autism Spectrum Disorders (ASD) classified as a rare genetic neurodevelopmental disorder featuring global developmental delay, absent or delayed speech, ASD-like behaviour and neonatal skeletal muscle hypotonia. PMS is caused by a heterozygous deletion of the distal end of chromosome 22q13.3 or SHANK3 mutations. We analyzed striated muscles of newborn Shank3Δ11(-/-) animals and found a significant enlargement of the sarcoplasmic reticulum as previously seen in adult Shank3Δ11(-/-) mice, indicative of a Shank3-dependent and not compensatory mechanism for this structural alteration. We analyzed transcriptional differences by RNA-sequencing of muscle tissue of neonatal Shank3Δ11(-/-) mice and compared those to Shank3(+/+) controls. We found significant differences in gene expression of ion channels crucial for muscle contraction and for molecules involved in calcium ion regulation. In addition, calcium storage- [i.e., Calsequestrin (CSQ)], calcium secretion- and calcium-related signaling-proteins were found to be affected. By immunostainings and Western blot analyses we could confirm these findings both in Shank3Δ11(-/-) mice and PMS patient muscle tissue. Moreover, alterations could be induced in vitro by the selective downregulation of Shank3 in C2C12 myotubes. Our results emphasize that SHANK3 levels directly or indirectly regulate calcium homeostasis in a cell autonomous manner that might contribute to muscular hypotonia especially seen in the newborn.

16.
Cancer Rep (Hoboken) ; 6(1): e1687, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35899825

RESUMO

BACKGROUND: The utility for liquid biopsy of tumor-associated circulating single-nucleotide variants, as opposed to mutations, of the mitochondrial (mt) and nuclear genomes in neuroblastoma (NB) is unknown. PROCEDURE: Variants of the mt and nuclear genomes from tumor, blood cells, and consecutive plasma samples of five patients with metastatic NB that relapsed or progressed were analyzed. Targeted parallel sequencing results of the mt genome, and of the coding region of 139 nuclear genes and 22 miRNAs implicated in NB, were correlated with clinical imaging and laboratory data. RESULTS: All tumors harbored multiple somatic mt and nuclear single nucleotide variants with low allelic frequency, most of them not detected in the circulation. In one patient a tumor-associated mt somatic variant was detected in the plasma before and during progressive disease. In a second patient a circulating nuclear tumor-associated DNA variant heralded clinical relapse. In all patients somatic mt and nuclear variants not evident in the tumor biopsy at time of diagnosis were found circulating at varying timepoints. This suggests either tumor heterogeneity, evolution of tumor variants or a confounding contribution of normal tissues to somatic variants in patient plasma. The number and allelic frequency of the circulating variants did not reflect the clinical course of the tumors. Mutational signatures of mt and nuclear somatic variants differed. They varied between patients and were detected in the circulation without mirroring the patients' course. CONCLUSIONS: In this limited cohort of NB patients clinically informative tumor-associated mt and nuclear circulating variants were detected by targeted parallel sequencing in a minority of patients.


Assuntos
DNA Tumoral Circulante , Neuroblastoma , Humanos , Recidiva Local de Neoplasia/genética , Neuroblastoma/genética , Mutação , Análise de Sequência de DNA , DNA Tumoral Circulante/genética , Nucleotídeos
17.
Theranostics ; 13(6): 1949-1973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064874

RESUMO

Rationale: Pancreatic lineage specification follows the formation of tripotent pancreatic progenitors (PPs). Current protocols rebuilding PPs in vitro have an endocrine lineage bias and are mostly based on PDX1/NKX6-1 coexpression neglecting other markers decisive for PP heterogeneity and lineage potential. However, true tripotent PPs are of utmost interest to study also exocrine disorders such as pancreatic cancer and to simultaneously generate all three pancreatic lineages from the same ancestor. Methods: Here, we performed a comprehensive compound testing to advance the generation of multipotent progenitors, which were further characterized for their trilineage potential in vitro and in vivo. The heterogeneity and cell-cell communication across the PP subpopulations were analyzed via single-cell transcriptomics. Results: We introduce a novel PP differentiation platform based on a comprehensive compound screening with an advanced design of experiments computing tool to reduce impurities and to increase Glycoprotein-2 expression and subsequent trilineage potential. Superior PP tripotency was proven in vitro by the generation of acinar, endocrine, and ductal cells as well as in vivo upon orthotopic transplantation revealing all three lineages at fetal maturation level. GP2 expression levels at PP stage ascribed varying pancreatic lineage potential. Intermediate and high GP2 levels were superior in generating endocrine and duct-like organoids (PDLO). FACS-based purification of the GP2high PPs allowed the generation of pancreatic acinar-like organoids (PALO) with proper morphology and expression of digestive enzymes. scRNA-seq confirmed multipotent identity, positioned the GP2/PDX1/NKX6-1high population next to human fetal tip and trunk progenitors and identified novel ligand-receptor (LR) interactions in distinct PP subpopulations. LR validation experiments licensed midkine and VEGF signaling to increase markers labelling the single cell clusters with high GP2 expression. Conclusion: In this study, we guide human pluripotent stem cells into multipotent pancreatic progenitors. This common precursor population, which has the ability to mature into acinar, ductal and functional ß-cells, serves as a basis for studying developmental processes and deciphering early cancer formation in a cell type-specific context. Using single-cell RNA sequencing and subsequent validation studies, we were able to dissect PP heterogeneity and specific cell-cell communication signals.


Assuntos
Células Secretoras de Insulina , Células-Tronco Pluripotentes , Humanos , Pâncreas/metabolismo , Diferenciação Celular/fisiologia , Células Secretoras de Insulina/metabolismo , Organoides
18.
Cell Mol Gastroenterol Hepatol ; 16(5): 783-807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37543088

RESUMO

BACKGROUND AND AIMS: Development of pancreatic ductal adenocarcinoma (PDAC) is a multistep process intensively studied; however, precocious diagnosis and effective therapy still remain unsatisfactory. The role for Notch signaling in PDAC has been discussed controversially, as both cancer-promoting and cancer-antagonizing functions have been described. Thus, an improved understanding of the underlying molecular mechanisms is necessary. Here, we focused on RBPJ, the receiving transcription factor in the Notch pathway, examined its expression pattern in PDAC, and characterized its function in mouse models of pancreatic cancer development and in the regeneration process after acute pancreatitis. METHODS: Conditional transgenic mouse models were used for functional analysis of RBPJ in the adult pancreas, initiation of PDAC precursor lesions, and pancreatic regeneration. Pancreata and primary acinar cells were tested for acinar-to-ductal metaplasia together with immunohistology and comprehensive transcriptional profiling by RNA sequencing. RESULTS: We identified reduced RBPJ expression in a subset of human PDAC specimens. Ptf1α-CreERT-driven depletion of RBPJ in transgenic mice revealed that its function is dispensable for the homeostasis and maintenance of adult acinar cells. However, primary RBPJ-deficient acinar cells underwent acinar-to-ductal differentiation in ex vivo. Importantly, oncogenic KRAS expression in the context of RBPJ deficiency facilitated the development of pancreatic intraepithelial neoplasia lesions with massive fibrotic stroma formation. Interestingly, RNA-sequencing data revealed a transcriptional profile associated with the cytokine/chemokine and extracellular matrix changes. In addition, lack of RBPJ delays the course of acute pancreatitis and critically impairs it in the context of KRASG12D expression. CONCLUSIONS: Our findings imply that downregulation of RBPJ in PDAC patients derepresses Notch targets and promotes KRAS-mediated pancreatic acinar cells transformation and desmoplasia development.


Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatite , Animais , Humanos , Camundongos , Células Acinares/metabolismo , Doença Aguda , Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos Transgênicos , Neoplasias Pancreáticas/patologia , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas
19.
Front Immunol ; 14: 1193507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545536

RESUMO

Background: Dysregulation of the immune system in amyotrophic lateral sclerosis (ALS) includes changes in T-cells composition and infiltration of T cells in the brain and spinal cord. Recent studies have shown that cytotoxic T cells can directly induce motor neuron death in a mouse model of ALS and that T cells from ALS patients are cytotoxic to iPSC-derived motor neurons from ALS patients. Furthermore, a clonal expansion to unknown epitope(s) was recently found in familial ALS and increased peripheral and intrathecal activation of cytotoxic CD8+ T cells in sporadic ALS. Results: Here, we show an increased activation of peripheral T cells from patients with sporadic ALS by IL-2 treatment, suggesting an increase of antigen-experienced T cells in ALS blood. However, a putative antigen for T-cell activation in ALS has not yet been identified. Therefore, we investigated if peptides derived from TDP-43, a key protein in ALS pathogenesis, can act as epitopes for antigen-mediated activation of human T cells by ELISPOT and flow cytometry. We found that TDP-43 peptides induced only a weak MHCI or MHCII-restricted activation of both naïve and antigen-experienced T cells from healthy controls and ALS patients. Interestingly, we found less activation in T cells from ALS patients to TDP-43 and control stimuli. Furthermore, we found no change in the levels of naturally occurring auto-antibodies against full-length TDP-43 in ALS. Conclusion: Our data suggests a general increase in antigen-experienced T cells in ALS blood, measured by in-vitro culture with IL-2 for 14 days. Furthermore, it suggests that TDP-43 is a weak autoantigen.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interleucina-2
20.
Oncoimmunology ; 12(1): 2215096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261086

RESUMO

The expression of viral antigens in chronic hepatitis B virus (HBV) infection drives continuous liver inflammation, one of the main risk factors to develop liver cancer. HBV developed immune-suppressive functions to escape from the host immune system, but their link to liver tumor development is not well understood. Here, we analyzed if and how HBV surface antigen (HBs) expression in combined hepatocellular-cholangiocarcinoma (cHCC/iCCA) cells influences their antigenicity for CD8 T cells. We randomly isolated liver tumor tissues from AlfpCre+-Trp53fl/fl/Alb-HBs+ tg mice and established primary carcinoma cell lines (pCCL) that showed a bilineal (CK7+/HNF4α+) cHCC/iCCA phenotype. These pCCL uniformly expressed HBs (HBshi), and low levels of MHC-I (MHC-Ilo), and were transiently convertible to a high antigenicity (MHC-Ihi) phenotype by IFN-γ treatment. HBshi/pCCL induced HBs/(Kb/S190-197)-specific CD8 T cells and developed slow-growing tumors in subcutaneously transplanted C57Bl/6J (B6) mice. Interestingly, pCCL-ex cells, established from HBshi/pCCL-induced and re-explanted tumors in B6 but not those in immune-deficient Rag1-/- mice showed major alterations, like an MHC-Ihi phenotype, a prominent growth-biased gene expression signature, a significantly decreased HBs expression (HBslo) and a switch to fast-growing tumors in re-transplanted B6 or PD-1-/- hosts with an unlocked PD-1/PD-L1 control system. CD8 T cell-mediated elimination of HBshi/pCCL, together with the attenuation of the negative restraints of HBs in the tumor cells, like ER-stress, reveals a novel mechanism to unleash highly aggressive HBslo/pCCL-ex immune-escape variants. Under certain conditions, HBs-specific CD8 T-cell responses thus potentiate tumor growth, an aspect that should be considered for therapeutic vaccination strategies against chronic HBV infection and liver tumors.


Assuntos
Carcinoma , Hepatite B Crônica , Neoplasias Hepáticas , Camundongos , Animais , Hepatite B Crônica/genética , Vírus da Hepatite B/genética , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Linhagem Celular , Neoplasias Hepáticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA