Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(12): 125003, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093268

RESUMO

Application of lower hybrid (LH) current drive in tokamak plasmas can induce both co- and countercurrent directed changes in toroidal rotation, depending on the core q profile. For discharges with q(0) <1, rotation increments in the countercurrent direction are observed. If the LH-driven current is sufficient to suppress sawteeth and increase q(0) above unity, the core toroidal rotation change is in the cocurrent direction. This change in sign of the rotation increment is consistent with a change in sign of the residual stress (the divergence of which constitutes an intrinsic torque that drives the flow) through its dependence on magnetic shear.

2.
Rev Sci Instrum ; 92(6): 063510, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243542

RESUMO

Divertor detachment and alternative divertor magnetic geometries are predicted to be promising approaches to handle the power exhaust of future fusion devices. In order to understand the detachment process caused by volumetric losses in alternative divertor magnetic geometries, a Multi-Wavelength Imaging (MWI) diagnostic has recently been designed and built for the Mega Amp Spherical Tokamak Upgrade. The MWI diagnostic will simultaneously capture 11 spectrally filtered images of the visible light emitted from divertor plasmas and provide crucial knowledge for the interpretation of observations and modeling efforts. This paper presents the optical design, mechanical design, hardware, and test results of an 11-channel MWI system with a field of view of 40°. The optical design shows better than 5 mm FWHM spatial resolution at the plasma on all 11 channels across the whole field of view. The spread of angle of incidence on the surface of each filter is also analyzed to inform the bandwidth specification of the interference filters. The results of the initial laboratory tests demonstrate that a spatial resolution of better than 5 mm FWHM is achieved for all 11 channels, meeting the specifications required for accurate tomography.

3.
Rev Sci Instrum ; 89(10): 103503, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399774

RESUMO

The Multi-Spectral Imaging system is a new diagnostic that captures simultaneous spectrally filtered images from a common line of sight while maintaining a large étendue and high throughput. Imaging several atomic line intensities simultaneously may enable numerous measurement techniques. By making a novel modification of a polychromator layout, the MSI sequentially filters and focuses images onto commercial CMOS cameras while exhibiting minimal vignetting and aberrations. A four-wavelength system was initially installed and tested on Alcator C-Mod and subsequently moved to TCV. The images are absolutely calibrated and spatially registered enabling 2D mappings of atomic line ratios and absolute line intensities. The spectral transmission of the optical system was calibrated using an integrating sphere of known radiance. The images are inverted by cross-referencing points on TCV with a computer-aided design (CAD) model.


Assuntos
Diagnóstico por Imagem/instrumentação , Calibragem , Análise Espectral
4.
Rev Sci Instrum ; 87(11): 11D405, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910681

RESUMO

A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (mse) diagnostics. The software supports multi-spectral line-polarization mse diagnostics which simultaneously measure emission at the mse σ and π lines as well as at two "background" wavelengths that are displaced from the mse spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the σ and π wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using a numerical-beat algorithm which allows the retardance of the mse photo-elastic modulators (pem's) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to pem retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the mse diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. The software suite is modular, parallelized, and portable to other facilities.

5.
Rev Sci Instrum ; 87(11): 11E527, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910659

RESUMO

A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large étendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSE emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA