Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Chem Biol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302607

RESUMO

The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.

2.
Metab Eng ; 78: 72-83, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201565

RESUMO

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Assuntos
Lignina , Engenharia Metabólica , Engenharia Metabólica/métodos , Lignina/metabolismo
3.
Metab Eng ; 80: 163-172, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37778408

RESUMO

Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.


Assuntos
Ácido Aconítico , Aspergillus , Ácido Aconítico/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Proteínas de Membrana Transportadoras/genética , Engenharia Metabólica , Succinatos/metabolismo
4.
Metab Eng ; 76: 193-203, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796578

RESUMO

Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional ß-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Mutagênese , Ácidos Graxos
5.
Microb Cell Fact ; 19(1): 24, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024522

RESUMO

BACKGROUND: Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS: The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION: This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism.


Assuntos
Diterpenos do Tipo Caurano/metabolismo , Lignina/metabolismo , Engenharia Metabólica , Ustilaginales/metabolismo , Animais , Proteínas de Plantas/metabolismo
6.
Stem Cells ; 35(2): 398-410, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27726254

RESUMO

Spontaneous aggregation and the associated enhancement of stemness have been observed in many anchorage dependent cells. Recently, aggregation of human mesenchymal stem cells (hMSCs) in nonadherent culture has been shown to reverse expansion-induced heterogeneity and loss of stemness and reprogram the hMSC to reacquire their primitive phenotype, a phenomenon that can significantly enhance therapeutic applications of hMSC. The objective of this study was to investigate the mechanistic basis underlying the connection between multicellular aggregation and stemness enhancement in hMSC by testing the hypothesis that cellular events induced during three-dimensional aggregation on nonadherent substratum induces changes in mitochondrial metabolism that promote the expression of stem cell genes Oct4, Sox2, and Nanog. Our results show that aggregation changes mitochondrial morphology and reduces mitochondrial membrane potential, resulting in a metabolic reconfiguration characterized by increased glycolytic and anaplerotic flux, and activation of autophagy. We further demonstrate that interrupting mitochondrial respiration in two-dimensional planar culture with small molecule inhibitors partially recapitulates the aggregation-mediated enhancement in stem cell properties, whereas enhancement of mitochondrial oxidative phosphorylation in the aggregated state reduces the aggregation-induced upregulation of Oct4, Sox2, and Nanog. Our findings demonstrate that aggregation-induced metabolic reconfiguration plays a central role in reacquisition of primitive hMSC phenotypic properties. Stem Cells 2017;35:398-410.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Adulto , Autofagia , Agregação Celular , Células Cultivadas , Glicólise , Humanos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Oxirredução , Fenótipo , Transdução de Sinais/genética , Regulação para Cima/genética , Adulto Jovem
7.
Stem Cells ; 33(11): 3368-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26274841

RESUMO

Human mesenchymal stem cells (hMSCs) are intrinsically heterogeneous and comprise subpopulations that differ in their proliferation, multi-potency, and functional properties, which are commonly demonstrated by culturing hMSCs at different plating densities. The objective of this study was to investigate the metabolic profiles of different subpopulations of hMSC by testing the hypothesis that the clonogenic hMSC subpopulation, which is selectively enriched in clonal density (CD) and low density (LD) culture (10 and 100 cells per square centimeter, respectively), possesses a metabolic phenotype that differs from that of hMSC in medium- or high-density (MD: 1,000 and HD: 3,000 cells per square centimeter, respectively). Cells at CD and LD conditions exhibited elevated expression of CD146 and colony forming unit-fibroblast compared with cells at MD- or HD. Global metabolic profiles revealed by gas chromatography-mass spectrometry of cell extracts showed clear distinction between LD and HD cultures, and density-dependent differences in coupling of glycolysis to the TCA cycle. Metabolic inhibitors revealed density-dependent differences in glycolysis versus oxidative phosphorylation (OXPHOS) for ATP generation, in glutamine metabolism, in the dependence on the pentose phosphate pathway for maintaining cellular redox state, and sensitivity to exogenous reactive oxygen species. We also show that active OXPHOS is not required for proliferation in LD culture but that OXPHOS activity increases senescence in HD culture. Together, the results revealed heterogeneity in hMSC culture exists at the level of primary metabolism. The unique metabolic characteristics of the clonogenic subpopulation suggest a novel approach for optimizing in vitro expansion of hMSCs.


Assuntos
Heterogeneidade Genética , Células-Tronco Mesenquimais/metabolismo , Adulto , Contagem de Células/métodos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Humanos , Pessoa de Meia-Idade , Adulto Jovem
8.
Oral Health Prev Dent ; 14(6): 563-569, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27957566

RESUMO

PURPOSE: To determine the association between types of food consumed, nutritional status (BMI) and caries in schoolchildren. MATERIAL AND METHODS: A cross-sectional study was performed with 224 schoolchildren 6 to 12 years of age. DMFT/ dmft indices, level of oral hygiene, nutritional status as quantified by BMI and types of food consumed were determined in all participants. Data were analysed using multiple linear regression with significance set at p < 0.05. RESULTS: Caries prevalence was 36%. In the multiple linear regression analysis adjusted for BMI, variables related to a higher number of caries were younger age and lower intake of vitamin D, calcium and fiber, with higher consumption of phosphorous and carbohydrates (R2 = 0.30; p < 0.0001 for the model). Sweetened softdrinks and chewy candy were risk factors for higher caries prevalence, while consuming milk and carrots were protectors. CONCLUSION: Caries in schoolchildren is highly prevalent in this community and is related to younger age and lower intake of vitamin D, calcium and fiber, but a higher consumption of phosphorous and carbohydrates. No relationship was found between caries and nutritional status.


Assuntos
Cárie Dentária/epidemiologia , Dieta , Estado Nutricional , Criança , Estudos Transversais , Feminino , Humanos , Masculino , México/epidemiologia , Prevalência
9.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365250

RESUMO

Biological nitrogen fixation by microbial diazotrophs can contribute significantly to nitrogen availability in non-nodulating plant species. In this study of molecular mechanisms and gene expression relating to biological nitrogen fixation, the aerobic nitrogen-fixing endophyte Burkholderia vietnamiensis, strain WPB, isolated from Populus trichocarpa served as a model for endophyte-poplar interactions. Nitrogen-fixing activity was observed to be dynamic on nitrogen-free medium with a subset of colonies growing to form robust, raised globular like structures. Secondary ion mass spectrometry (NanoSIMS) confirmed that N-fixation was uneven within the population. A fluorescent transcriptional reporter (GFP) revealed that the nitrogenase subunit nifH is not uniformly expressed across genetically identical colonies of WPB and that only ~11% of the population was actively expressing the nifH gene. Higher nifH gene expression was observed in clustered cells through monitoring individual bacterial cells using single-molecule fluorescence in situ hybridization. Through 15N2 enrichment, we identified key nitrogenous metabolites and proteins synthesized by WPB and employed targeted metabolomics in active and inactive populations. We cocultivated WPB Pnif-GFP with poplar within a RhizoChip, a synthetic soil habitat, which enabled direct imaging of microbial nifH expression within root epidermal cells. We observed that nifH expression is localized to the root elongation zone where the strain forms a unique physical interaction with the root cells. This work employed comprehensive experimentation to identify novel mechanisms regulating both biological nitrogen fixation and beneficial plant-endophyte interactions.


Assuntos
Fixação de Nitrogênio , Populus , Fixação de Nitrogênio/fisiologia , Populus/genética , Populus/metabolismo , Endófitos/genética , Oxirredutases/genética , Hibridização in Situ Fluorescente , Nitrogenase/genética , Nitrogenase/metabolismo , Nitrogênio
10.
Biotechnol Biofuels Bioprod ; 16(1): 53, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991437

RESUMO

BACKGROUND: Fuels and chemicals derived from non-fossil sources are needed to lessen human impacts on the environment while providing a healthy and growing economy. 3-hydroxypropionic acid (3-HP) is an important chemical building block that can be used for many products. Biosynthesis of 3-HP is possible; however, low production is typically observed in those natural systems. Biosynthetic pathways have been designed to produce 3-HP from a variety of feedstocks in different microorganisms. RESULTS: In this study, the 3-HP ß-alanine pathway consisting of aspartate decarboxylase, ß-alanine-pyruvate aminotransferase, and 3-hydroxypropionate dehydrogenase from selected microorganisms were codon optimized for Aspergillus species and placed under the control of constitutive promoters. The pathway was introduced into Aspergillus pseudoterreus and subsequently into Aspergillus niger, and 3-HP production was assessed in both hosts. A. niger produced higher initial 3-HP yields and fewer co-product contaminants and was selected as a suitable host for further engineering. Proteomic and metabolomic analysis of both Aspergillus species during 3-HP production identified genetic targets for improvement of flux toward 3-HP including pyruvate carboxylase, aspartate aminotransferase, malonate semialdehyde dehydrogenase, succinate semialdehyde dehydrogenase, oxaloacetate hydrolase, and a 3-HP transporter. Overexpression of pyruvate carboxylase improved yield in shake-flasks from 0.09 to 0.12 C-mol 3-HP C-mol-1 glucose in the base strain expressing 12 copies of the ß-alanine pathway. Deletion or overexpression of individual target genes in the pyruvate carboxylase overexpression strain improved yield to 0.22 C-mol 3-HP C-mol-1 glucose after deletion of the major malonate semialdehyde dehydrogenase. Further incorporation of additional ß-alanine pathway genes and optimization of culture conditions (sugars, temperature, nitrogen, phosphate, trace elements) for 3-HP production from deacetylated and mechanically refined corn stover hydrolysate improved yield to 0.48 C-mol 3-HP C-mol-1 sugars and resulted in a final titer of 36.0 g/L 3-HP. CONCLUSIONS: The results of this study establish A. niger as a host for 3-HP production from a lignocellulosic feedstock in acidic conditions and demonstrates that 3-HP titer and yield can be improved by a broad metabolic engineering strategy involving identification and modification of genes participated in the synthesis of 3-HP and its precursors, degradation of intermediates, and transport of 3-HP across the plasma membrane.

11.
Mil Med Res ; 10(1): 48, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853489

RESUMO

BACKGROUND: Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations, such as firefighting, law enforcement, military, and sports. A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment. METHODS: To study regulatory processes in intense physical activity simulating real-life conditions, we performed a multi-omics analysis of three biofluids (blood plasma, urine, and saliva) collected from 11 wildland firefighters before and after a 45 min, intense exercise regimen. Omics profiles post- versus pre-exercise were compared by Student's t-test followed by pathway analysis and comparison between the different omics modalities. RESULTS: Our multi-omics analysis identified and quantified 3835 proteins, 730 lipids and 182 metabolites combining the 3 different types of samples. The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands. The urine analysis showed a strong, concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites, reabsorption of nutrients and maintenance of fluid balance. In saliva, we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides. A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection. CONCLUSION: This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility, suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.


Assuntos
Exercício Físico , Multiômica , Humanos , Exercício Físico/fisiologia , Citocinas
12.
Nat Commun ; 14(1): 5642, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704622

RESUMO

Bacterial remineralization of algal organic matter fuels algal growth but is rarely quantified. Consequently, we cannot currently predict whether some bacterial taxa may provide more remineralized nutrients to algae than others. Here, we quantified bacterial incorporation of algal-derived complex dissolved organic carbon and nitrogen and algal incorporation of remineralized carbon and nitrogen in fifteen bacterial co-cultures growing with the diatom Phaeodactylum tricornutum at the single-cell level using isotope tracing and nanoSIMS. We found unexpected strain-to-strain and cell-to-cell variability in net carbon and nitrogen incorporation, including non-ubiquitous complex organic nitrogen utilization and remineralization. We used these data to identify three distinct functional guilds of metabolic interactions, which we termed macromolecule remineralizers, macromolecule users, and small-molecule users, the latter exhibiting efficient growth under low carbon availability. The functional guilds were not linked to phylogeny and could not be elucidated strictly from metabolic capacity as predicted by comparative genomics, highlighting the need for direct activity-based measurements in ecological studies of microbial metabolic interactions.


Assuntos
Diatomáceas , Bactérias/genética , Carbono , Isótopos , Nitrogênio
13.
Nat Commun ; 14(1): 2461, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117207

RESUMO

Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.


Assuntos
Algoritmos , Metabolômica , Espectrometria de Massas/métodos , Metabolômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Mobilidade Iônica
14.
NPJ Biofilms Microbiomes ; 8(1): 60, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858888

RESUMO

While deprivation of dietary fiber has been associated with adverse health outcomes, investigations concerning the effect of dietary fiber on the gut microbiome have been largely limited to compositional sequence-based analyses or utilize a defined microbiota not native to the host. To extend understanding of the microbiome's functional response to dietary fiber deprivation beyond correlative evidence from sequence-based analyses, approaches capable of measuring functional enzymatic activity are needed. In this study, we use an activity-based protein profiling (ABPP) approach to identify sugar metabolizing and transport proteins in native mouse gut microbiomes that respond with differential activity to the deprivation or supplementation of the soluble dietary fibers inulin and pectin. We found that the microbiome of mice subjected to a high fiber diet high in soluble fiber had increased functional activity of multiple proteins, including glycoside hydrolases, polysaccharide lyases, and sugar transport proteins from diverse taxa. The results point to an increase in activity of the Bifidobacterium shunt metabolic pathway in the microbiome of mice fed high fiber diets. In those subjected to a low fiber diet, we identified a shift from the degradation of dietary fibers to that of gut mucins, in particular by the recently isolated taxon "Musculibacterium intestinale", which experienced dramatic growth in response to fiber deprivation. When combined with metabolomics and shotgun metagenomics analyses, our findings provide a functional investigation of dietary fiber metabolism in the gut microbiome and demonstrates the power of a combined ABPP-multiomics approach for characterizing the response of the gut microbiome to perturbations.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias , Bifidobacterium/metabolismo , Proteínas de Transporte/metabolismo , Fibras na Dieta , Fezes/microbiologia , Camundongos , Mucinas/metabolismo , Mucinas/farmacologia , Açúcares/metabolismo , Açúcares/farmacologia
15.
Sci Adv ; 8(3): eabl4930, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061539

RESUMO

Extensive microdiversity within Prochlorococcus, the most abundant marine cyanobacterium, occurs at scales from a single droplet of seawater to ocean basins. To interpret the structuring role of variations in genetic potential, as well as metabolic and physiological acclimation, we developed a mechanistic constraint-based modeling framework that incorporates the full suite of genes, proteins, metabolic reactions, pigments, and biochemical compositions of 69 sequenced isolates spanning the Prochlorococcus pangenome. Optimizing each strain to the local, observed physical and chemical environment along an Atlantic Ocean transect, we predicted variations in strain-specific patterns of growth rate, metabolic configuration, and physiological state, defining subtle niche subspaces directly attributable to differences in their encoded metabolic potential. Predicted growth rates covaried with observed ecotype abundances, affirming their significance as a measure of fitness and inferring a nonlinear density dependence of mortality. Our study demonstrates the potential to interpret global-scale ecosystem organization in terms of cellular-scale processes.

16.
Metab Eng Commun ; 15: e00206, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36158112

RESUMO

In this study, a 14-gene edited Pseudomonas putida KT2440 strain for heterologous indigoidine production was examined using three distinct omic datasets. Transcriptomic data indicated that CRISPR/dCpf1-interference (CRISPRi) mediated multiplex repression caused global gene expression changes, implying potential undesirable changes in metabolic flux. 13C-metabolic flux analysis (13C-MFA) revealed that the core P. putida flux network after CRISPRi repression was conserved, with moderate reduction of TCA cycle and pyruvate shunt activity along with glyoxylate shunt activation during glucose catabolism. Metabolomic results identified a change in intracellular TCA metabolites and extracellular metabolite secretion profiles (sugars and succinate overflow) in the engineered strains. These omic analyses guided further strain engineering, with a random mutagenesis screen first identifying an optimal ribosome binding site (RBS) for Cpf1 that enabled stronger product-substrate pairing (1.6-fold increase). Then, deletion strains were constructed with excision of the PHA operon (ΔphaAZC-IID) resulting in a 2.2-fold increase in indigoidine titer over the optimized Cpf1-RBS construct at the end of the growth phase (∼6 h). The maximum indigoidine titer (at 72 h) in the ΔphaAZC-IID strain had a 1.5-fold and 1.8-fold increase compared to the optimized Cpf1-RBS construct and the original strain, respectively. Overall, this study demonstrated that integration of omic data types is essential for understanding responses to complex metabolic engineering designs and directly quantified the effect of such modifications on central metabolism.

17.
Nat Commun ; 13(1): 4925, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995792

RESUMO

Muconic acid is a bioprivileged molecule that can be converted into direct replacement chemicals for incumbent petrochemicals and performance-advantaged bioproducts. In this study, Pseudomonas putida KT2440 is engineered to convert glucose and xylose, the primary carbohydrates in lignocellulosic hydrolysates, to muconic acid using a model-guided strategy to maximize the theoretical yield. Using adaptive laboratory evolution (ALE) and metabolic engineering in a strain engineered to express the D-xylose isomerase pathway, we demonstrate that mutations in the heterologous D-xylose:H+ symporter (XylE), increased expression of a major facilitator superfamily transporter (PP_2569), and overexpression of aroB encoding the native 3-dehydroquinate synthase, enable efficient muconic acid production from glucose and xylose simultaneously. Using the rationally engineered strain, we produce 33.7 g L-1 muconate at 0.18 g L-1 h-1 and a 46% molar yield (92% of the maximum theoretical yield). This engineering strategy is promising for the production of other shikimate pathway-derived compounds from lignocellulosic sugars.


Assuntos
Pseudomonas putida , Xilose , Fermentação , Glucose/metabolismo , Engenharia Metabólica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Sórbico/análogos & derivados , Xilose/metabolismo
18.
Metab Eng Commun ; 15: e00203, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36065328

RESUMO

The global regulator LaeA controls secondary metabolism in diverse Aspergillus species. Here we explored its role in regulation of itaconic acid production in Aspergillus pseudoterreus. To understand its role in regulating metabolism, we deleted and overexpressed laeA, and assessed the transcriptome, proteome, and secreted metabolome prior to and during initiation of phosphate limitation induced itaconic acid production. We found that secondary metabolite clusters, including the itaconic acid biosynthetic gene cluster, are regulated by laeA and that laeA is required for high yield production of itaconic acid. Overexpression of LaeA improves itaconic acid yield at the expense of biomass by increasing the expression of key biosynthetic pathway enzymes and attenuating the expression of genes involved in phosphate acquisition and scavenging. Increased yield was observed in optimized conditions as well as conditions containing excess nutrients that may be present in inexpensive sugar containing feedstocks such as excess phosphate or complex nutrient sources. This suggests that global regulators of metabolism may be useful targets for engineering metabolic flux that is robust to environmental heterogeneity.

19.
J Neurochem ; 119(4): 772-84, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21895655

RESUMO

As class III unconventional myosins are motor proteins with an N-terminal kinase domain, it seems likely they play a role in both signaling and actin based transport. A growing body of evidence indicates that the motor functions of human class IIIA myosin, which has been implicated in progressive hearing loss, are modulated by intermolecular autophosphorylation. However, the phosphorylation sites have not been identified. We studied the kinase activity and phosphorylation sites of mouse class III myosins, mMyo3A and 3B, which are highly similar to their human orthologs. We demonstrate that the kinase domains of mMyo3A and 3B are active kinases, and that they have similar, if not identical, substrate specificities. We show that the kinase domains of these proteins autophosphorylate, and that they can phosphorylate sites within their myosin and tail domains. Using liquid chromatography-mass spectrometry, we identified phosphorylated sites in the kinase, myosin motor and tail domains of both mMyo3A and 3B. Most of the phosphorylated sites we identified and their consensus phosphorylation motifs are highly conserved among vertebrate class III myosins, including human class III myosins. Our findings are a major step toward understanding how the functions of class III myosins are regulated by phosphorylation.


Assuntos
Miosina Tipo III/química , Miosina Tipo III/metabolismo , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Aminoácidos , Animais , Humanos , Espectrometria de Massas , Camundongos , Miosina Tipo III/classificação , Miosina Tipo III/genética , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Especificidade por Substrato
20.
ACS Synth Biol ; 10(11): 2968-2981, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34636549

RESUMO

Optimizing the metabolism of microbial cell factories for yields and titers is a critical step for economically viable production of bioproducts and biofuels. In this process, tuning the expression of individual enzymes to obtain the desired pathway flux is a challenging step, in which data from separate multiomics techniques must be integrated with existing biological knowledge to determine where changes should be made. Following a design-build-test-learn strategy, building on recent advances in Bayesian metabolic control analysis, we identify key enzymes in the oleaginous yeast Yarrowia lipolytica that correlate with the production of itaconate by integrating a metabolic model with multiomics measurements. To this extent, we quantify the uncertainty for a variety of key parameters, known as flux control coefficients (FCCs), needed to improve the bioproduction of target metabolites and statistically obtain key correlations between the measured enzymes and boundary flux. Based on the top five significant FCCs and five correlated enzymes, our results show phosphoglycerate mutase, acetyl-CoA synthetase (ACSm), carbonic anhydrase (HCO3E), pyrophosphatase (PPAm), and homoserine dehydrogenase (HSDxi) enzymes in rate-limiting reactions that can lead to increased itaconic acid production.


Assuntos
Yarrowia/metabolismo , Acetato-CoA Ligase/metabolismo , Acetilcoenzima A/metabolismo , Teorema de Bayes , Biocombustíveis/microbiologia , Anidrases Carbônicas/metabolismo , Homosserina Desidrogenase/metabolismo , Engenharia Metabólica/métodos , Pirofosfatases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA