Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Pharmacol Exp Ther ; 381(1): 12-21, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35078863

RESUMO

The CD40/CD40L pathway plays a major role in multiple inflammatory processes involving different immune and stromal cells. Abnormal activation of this pathway has been implicated in pathogenesis of complex autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, Graves' disease, and Sjogren's Syndrome. We completed in vitro and in vivo preclinical characterization of KPL-404, a novel humanized anti-CD40 IgG4 monoclonal antibody, to demonstrate its potency, efficacy, and pharmacokinetic profile; safety was also assessed. In vitro, KPL-404 bound recombinant human and cynomolgus monkey CD40 with comparable affinity in the nanomolar range. KPL-404 binding to cell surface CD40 did not induce antibody- or complement-mediated cytotoxicity of CD40-expressing cells. Pharmacological antagonistic activity of KPL-404 was demonstrated in vitro by inhibition of CD40-mediated downstream NF-kB activation. In the in vivo study with cynomolgus monkeys, KPL-404, administered intravenously as a single dose (10 mg/kg) or two monthly doses of 1 or 5 mg/kg, did not elicit observable safety findings, including thrombocytopenia over 8 weeks. KPL-404 engaged CD40 expressed on peripheral B cells for 2 and 4 weeks after a single administration of 5 or 10 mg/kg IV, respectively, without depletion of peripheral B cells. At 5 mg/kg IV, KPL-404 blocked both primary and secondary responses to T-cell dependent antibody responses to test antigens, KLH, and tetanus toxoid. These data illustrated the relationship between KPL-404 serum concentration and pharmacodynamic effects of CD40-targeting in circulation and in lymphoid tissues. These data support clinical development of KPL-404 in autoimmune diseases. SIGNIFICANCE STATEMENT: We aimed to develop a potent and efficacious CD40 antagonist. In vitro and in vivo findings show that KPL-404 blocks the anti-CD40 antibody that potently inhibits primary and secondary antibody responses at pharmacologically relevant concentrations, has a favorable pharmacokinetic profile, and does not deplete B cells by antibody-dependent cellular cytotoxicity or apoptosis ("nondepleting"). These findings support clinical development of KPL-404 as a potential therapeutic in autoimmune diseases.


Assuntos
Anticorpos Monoclonais , Doenças Autoimunes , Animais , Doenças Autoimunes/tratamento farmacológico , Antígenos CD40 , Ligante de CD40 , Macaca fascicularis
2.
Ann Rheum Dis ; 81(4): 524-536, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35045965

RESUMO

BACKGROUND: Effective and safe therapies are needed for the treatment of patients with giant cell arteritis (GCA). Emerging as a key cytokine in inflammation, granulocyte-macrophage colony stimulating factor (GM-CSF) may play a role in promoting inflammation in GCA. OBJECTIVES: To investigate expression of GM-CSF and its receptor in arterial lesions from patients with GCA. To analyse activation of GM-CSF receptor-associated signalling pathways and expression of target genes. To evaluate the effects of blocking GM-CSF receptor α with mavrilimumab in ex vivo cultured arteries from patients with GCA. METHODS: Quantitative real time PCR, in situ RNA hybridisation, immunohistochemistry, immunofluorescence and confocal microscopy, immunoassay, western blot and ex vivo temporal artery culture. RESULTS: GM-CSF and GM-CSF receptor α mRNA and protein were increased in GCA lesions; enhanced JAK2/STAT5A expression/phosphorylation as well as increased expression of target genes CD83 and Spi1/PU.1 were observed. Treatment of ex vivo cultured GCA arteries with mavrilimumab resulted in decreased transcripts of CD3ε, CD20, CD14 and CD16 cell markers, and reduction of infiltrating CD16 and CD3ε cells was observed by immunofluorescence. Mavrilimumab reduced expression of molecules relevant to T cell activation (human leukocyte antigen-DR [HLA-DR]) and Th1 differentiation (interferon-γ), the pro-inflammatory cytokines: interleukin 6 (IL-6), tumour necrosis factor α (TNFα) and IL-1ß, as well as molecules related to vascular injury (matrix metalloprotease 9, lipid peroxidation products and inducible nitric oxide synthase [iNOS]). Mavrilimumab reduced CD34 + cells and neoangiogenesis in GCA lesions. CONCLUSION: The inhibitory effects of mavrilimumab on multiple steps in the GCA pathogenesis cascade in vitro are consistent with the clinical observation of reduced GCA flares in a phase 2 trial and support its development as a therapeutic option for patients with GCA.


Assuntos
Arterite de Células Gigantes , Anticorpos Monoclonais Humanizados , Artérias/metabolismo , Artérias/patologia , Células Cultivadas , Citocinas , Arterite de Células Gigantes/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Inflamação , Neovascularização Patológica , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos
3.
J Immunol ; 200(7): 2291-2303, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29445009

RESUMO

Binge/moderate alcohol suppresses TLR4-MyD88 proinflammatory cytokines; however, alcohol's effects on TLR-TRIF signaling, especially after in vivo exposure in humans, are unclear. We performed a comparative analysis of the TLR4-MyD88, TLR4-TRIF, and TLR3-TRIF pathways in human monocytes following binge alcohol exposure. Mechanistic regulation of TLR-TRIF signaling by binge alcohol was evaluated by analyzing IRF3 and TBK1, upstream regulator protein phosphatase 1 (PP1), and immunoregulatory stress proteins HspA1A and XBP-1 in alcohol-treated human and mouse monocytes/macrophages. Two approaches for alcohol exposure were used: in vivo exposure of primary monocytes in binge alcohol-consuming human volunteers or in vitro exposure of human monocytes/murine macrophages to physiological alcohol concentrations (25-50 mM ethanol), followed by LPS (TLR4) or polyinosinic-polycytidylic acid (TLR3) stimulation ex vivo. In vivo and in vitro binge alcohol exposure significantly inhibited the TLR4-MyD88 cytokines TNF-α and IL-6, as well as the TLR4-TRIF cytokines/chemokines IFN-ß, IP-10, and RANTES, in human monocytes, but not TLR3-TRIF-induced cytokines/chemokines, as detected by quantitative PCR and ELISA. Mechanistic analyses revealed TBK-1-independent inhibition of the TLR4-TRIF effector IRF3 in alcohol-treated macrophages. Although stress protein XBP-1, which is known to regulate IRF3-mediated IFN-ß induction, was not affected by alcohol, HspA1A was induced by in vivo alcohol in human monocytes. Alcohol-induced HspA1A was required for inhibition of TLR4-MyD88 signaling but not TLR4-TRIF cytokines in macrophages. In contrast, inhibition of PP1 prevented alcohol-mediated TLR4-TRIF tolerance in macrophages. Collectively, our results demonstrate that in vivo and in vitro binge alcohol exposure in humans suppresses TLR4-MyD88 and TLR4-TRIF, but not TLR3-TRIF, responses. Whereas alcohol-mediated effects on the PP1-IRF3 axis inhibit the TLR4-TRIF pathway, HspA1A selectively suppresses the TLR4-MyD88 pathway in monocytes/macrophages.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Consumo Excessivo de Bebidas Alcoólicas/patologia , Etanol/toxicidade , Macrófagos/imunologia , Monócitos/imunologia , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Adolescente , Adulto , Animais , Linhagem Celular , Quimiocina CCL5/antagonistas & inibidores , Quimiocina CXCL10/antagonistas & inibidores , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Inflamação/patologia , Interferon beta/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos , Poli I-C/imunologia , Células RAW 264.7 , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Proteína 1 de Ligação a X-Box/efeitos dos fármacos , Adulto Jovem
4.
J Immunol ; 193(4): 1975-87, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024384

RESUMO

Binge or moderate alcohol exposure impairs host defense and increases susceptibility to infection because of compromised innate immune responses. However, there is a lack of consensus on the molecular mechanism by which alcohol mediates this immunosuppression. In this study, we show that cellular stress proteins HSF1 and hsp70 play a mechanistic role in alcohol-mediated inhibition of the TLR4/MyD88 pathway. Alcohol exposure induced transcription factor HSF1 mRNA expression and DNA binding activity in primary human monocytes and murine macrophages. Furthermore, HSF1 target gene hsp70 mRNA and protein are upregulated by alcohol in monocytes. In vitro pre-exposure to moderate alcohol reduced subsequent LPS-induced NF-κB promoter activity and downstream TNF-α, IL-6 and IL-1ß production in monocytes and macrophages, exhibiting endotoxin tolerance. Mechanistic analysis demonstrates that alcohol-induced HSF1 binds to the TNF-α promoter in macrophages at early time points, exerting transrepression and decreased TNF-α expression. Furthermore, association of hsp70 with NF-κB subunit p50 in alcohol-treated macrophages correlates with reduced NF-κB activation at later time points. Hsp70 overexpression in macrophages was sufficient to block LPS-induced NF-κB promoter activity, suggesting alcohol-mediated immunosuppression by hsp70. The direct crosstalk of hsp70 and HSF1 was further confirmed by the loss of alcohol-mediated endotoxin tolerance in hsp70- and HSF1-silenced macrophages. Our data suggest that alcohol-mediated activation of HSF1 and induction of hsp70 inhibit TLR4-MyD88 signaling and are required for alcohol-induced endotoxin tolerance. Using stress proteins as direct drug targets would be clinically relevant in alcohol abuse treatment and may serve to provide a better understanding of alcohol-mediated immunosuppression.


Assuntos
Proteínas de Ligação a DNA/imunologia , Etanol/farmacologia , Proteínas de Choque Térmico HSP70/imunologia , Tolerância Imunológica/efeitos dos fármacos , Inflamação/imunologia , Receptor 4 Toll-Like/antagonistas & inibidores , Fatores de Transcrição/imunologia , Adolescente , Adulto , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Linhagem Celular , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Endotoxinas/imunologia , Feminino , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/genética , Fatores de Transcrição de Choque Térmico , Humanos , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Macrófagos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/imunologia , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Subunidade p50 de NF-kappa B/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Interferência de RNA , RNA Mensageiro/biossíntese , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/biossíntese , Adulto Jovem
5.
Am J Physiol Heart Circ Physiol ; 309(11): H1947-63, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26408534

RESUMO

There are 160,000 cancer patients worldwide treated with particle radiotherapy (RT). With the advent of proton, and high (H) charge (Z) and energy (E) HZE ionizing particle RT, the cardiovascular diseases risk estimates are uncertain. In addition, future deep space exploratory-type missions will expose humans to unknown but low doses of particle irradiation (IR). We examined molecular responses using transcriptome profiling in left ventricular murine cardiomyocytes isolated from mice that were exposed to 90 cGy, 1 GeV proton ((1)H) and 15 cGy, 1 GeV/nucleon iron ((56)Fe) over 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the IR response and time after exposure, with (56)Fe-IR showing the greatest level of gene modulation. (1)H-IR showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses, and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Validation of the signal transduction network by protein analysis and gel shift assay showed that particle IR clearly regulates a long-lived signaling mechanism for ERK1/2, p38 MAPK signaling and identified NFATc4, GATA4, STAT3, and NF-κB as regulators of the response at specific time points. These data suggest that the molecular responses and gene expression to (56)Fe-IR in cardiomyocytes are unique and long-lasting. Our study may have significant implications for the efforts of National Aeronautics and Space Administration to develop heart disease risk estimates for astronauts and for patients receiving conventional and particle RT via identification of specific HZE-IR molecular markers.


Assuntos
Redes Reguladoras de Genes/efeitos da radiação , Radioisótopos de Ferro/toxicidade , Miócitos Cardíacos/efeitos da radiação , Radioterapia de Alta Energia/efeitos adversos , Transdução de Sinais/efeitos da radiação , Animais , Células Cultivadas , Análise por Conglomerados , Ativação Enzimática , Fibrose , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Medição de Risco , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo , Transcrição Gênica/efeitos da radiação , Transcriptoma/efeitos da radiação , Irradiação Corporal Total
6.
J Immunol ; 187(10): 5221-32, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22013128

RESUMO

The canonical Wnt/ß-catenin signaling pathway plays an important role in thymocyte development and T cell migration, but little is known about its role in naive-to-effector differentiation in human peripheral T cells. We show that activation of Wnt/ß-catenin signaling arrests human peripheral blood and cord blood T lymphocytes in the naive stage and blocks their transition into functional T effector cells. Wnt signaling was induced in polyclonally activated human T cells by treatment either with the glycogen synthase kinase 3ß inhibitor TWS119 or the physiological Wnt agonist Wnt-3a, and these T cells preserved a naive CD45RA(+)CD62L(+) phenotype compared with control-activated T cells that progressed to a CD45RO(+)CD62L(-) effector phenotype, and this occurred in a TWS119 dose-dependent manner. TWS119-induced Wnt signaling reduced T cell expansion, as a result of a block in cell division, and impaired acquisition of T cell effector function, measured by degranulation and IFN-γ production in response to T cell activation. The block in T cell division may be attributed to the reduced IL-2Rα expression in TWS119-treated T cells that lowers their capacity to use autocrine IL-2 for expansion. Collectively, our data suggest that Wnt/ß-catenin signaling is a negative regulator of naive-to-effector T cell differentiation in human T lymphocytes. The arrest in T cell differentiation induced by Wnt signaling might have relevant clinical applications such as to preserve the naive T cell compartment in Ag-specific T cells generated ex vivo for adoptive T cell immunotherapy.


Assuntos
Diferenciação Celular/imunologia , Sangue Fetal/citologia , Sangue Fetal/imunologia , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Proteínas Wnt/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Sangue Fetal/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Humanos , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Subpopulações de Linfócitos T/enzimologia , Proteínas Wnt/metabolismo
7.
Oncotarget ; 13: 960-967, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937502

RESUMO

INTRODUCTION: Merkel cell carcinoma (MCC) is an aggressive skin cancer, related to the Merkel Cell Polyomavirus (MCPyV) in 80% of cases. Immune checkpoint inhibitors provide sustained benefit in about 50% of MCC patients with advanced disease. Glypican-3 (GPC3) is an oncofetal tumor antigen that is an attractive target for chimeric antigen receptor T cell therapy due to its highly restricted expression on normal tissue and high prevalence in several solid tumors. GPC3 is known to be expressed in MCC but its association with tumor characteristics or prognosis has not been reported. We investigated MCC GPC3 expression by immunohistochemistry (IHC) and its association with tumor characteristics, MCPyV status, and patient outcome. METHODS: The GC33 antibody clone was validated for GPC3 IHC staining of tumor specimens in comparison to an established GPC3 IHC antibody. An MCC tissue microarray was stained for GPC3 by IHC using GC33 antibody. Association of GPC3+ IHC with baseline characteristics, MCPyV status (qPCR) and outcome (death from MCC/recurrence) were assessed. RESULTS: Forty-two of 62 samples (67.7%) were GPC3+. GPC3 expression was more frequently observed in females (p = 0.048) and MCPyV-negative tumors (p = 0.021). By multivariate analysis, GPC3 expression was associated with increased death from disease (CSS) (hazard ratio [HR] 4.05, 95% CI 1.06-15.43), together with advanced age (HR 4.85, 95% CI 1.39-16.9) and male gender (HR 4.64, 95% CI 1.31-16.41). CONCLUSIONS: GPC3 expression is frequent in MCC tumors, especially MCPyV-negative cases, and is associated with increased risk of death. High prevalence of surface GPC3 makes it a putative drug target.


Assuntos
Carcinoma de Célula de Merkel , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Receptores de Antígenos Quiméricos , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Antígenos de Neoplasias , Carcinoma de Célula de Merkel/patologia , Feminino , Glipicanas , Humanos , Inibidores de Checkpoint Imunológico , Masculino , Infecções por Polyomavirus/complicações , Neoplasias Cutâneas/patologia , Infecções Tumorais por Vírus/complicações
8.
PLoS One ; 17(5): e0266980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507536

RESUMO

PURPOSE: The solid tumor microenvironment (TME) drives T cell dysfunction and inhibits the effectiveness of immunotherapies such as chimeric antigen receptor-based T cell (CAR T) cells. Early data has shown that modulation of T cell metabolism can improve intratumoral T cell function in preclinical models. EXPERIMENTAL DESIGN: We evaluated GPC3 expression in human normal and tumor tissue specimens. We developed and evaluated BOXR1030, a novel CAR T therapeutic co-expressing glypican-3 (GPC3)-targeted CAR and exogenous glutamic-oxaloacetic transaminase 2 (GOT2) in terms of CAR T cell function both in vitro and in vivo. RESULTS: Cell surface expression of tumor antigen GPC3 was observed by immunohistochemical staining in tumor biopsies from hepatocellular carcinoma, liposarcoma, squamous lung cancer, and Merkel cell carcinoma patients. Compared to control GPC3 CAR alone, BOXR1030 (GPC3-targeted CAR T cell that co-expressed GOT2) demonstrated superior in vivo efficacy in aggressive solid tumor xenograft models, and showed favorable attributes in vitro including an enhanced cytokine production profile, a less-differentiated T cell phenotype with lower expression of stress and exhaustion markers, an enhanced metabolic profile and increased proliferation in TME-like conditions. CONCLUSIONS: Together, these results demonstrated that co-expression of GOT2 can substantially improve the overall antitumor activity of CAR T cells by inducing broad changes in cellular function and phenotype. These data show that BOXR1030 is an attractive approach to targeting select solid tumors. To this end, BOXR1030 will be explored in the clinic to assess safety, dose-finding, and preliminary efficacy (NCT05120271).


Assuntos
Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Glipicanas/genética , Glipicanas/metabolismo , Xenoenxertos , Humanos , Imunoterapia Adotiva/métodos , Neoplasias Hepáticas/patologia , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Arthritis Res Ther ; 23(1): 5, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407802

RESUMO

BACKGROUND: CD40-CD40L is a key co-stimulatory pathway for B cell activation. As such, its blockade can inhibit pathogenic B cell responses in autoimmune diseases, such as Sjogren's syndrome (SjS) and systemic lupus erythematosus (SLE). In this study, we examined the in vitro effects of KPL-404, a humanized anti-CD40 monoclonal antibody (Ab), on primary human B cells derived from either healthy donors (HD) or autoimmune patients and compared them to the effects of G28-5, a partially antagonistic anti-CD40 antibody. METHODS: PBMCs from HD or SjS and SLE patients were cultured in high-density cell cultures in the presence of IgG4 isotype control or anti-CD40 Abs KPL-404 or G28-5. Cells were stimulated with anti-CD3/CD28 cross-linking reagent ImmunoCult (IC) to induce CD40L-CD40-mediated B cell responses. B cell proliferation and activation, measured by dilution of proliferation tracker dye and the upregulation of CD69 and CD86, respectively, were assessed by flow cytometry. Anti-CD40 Ab cell-internalization was examined by imaging flow cytometry. Cytokine release in the PBMC cultures was quantified by bead-based multiplex assay. RESULTS: KPL-404 binds to CD40 expressed on different subsets of B cells without inducing cell depletion, or B cell proliferation and activation in in vitro culture. Under the same conditions, G28-5 promoted proliferation of and increased CD69 expression on otherwise unstimulated B cells. KPL-404 efficiently blocked the CD40L-CD40-mediated activation of B cells from HD at concentrations between 1 and 10 µg/ml. Treatment with KPL-404 alone did not promote cytokine production and blocked the production of IFNß in healthy PBMC cultures. KPL-404 efficiently blocked CD40L-CD40-mediated activation of B cells from patients with SjS and SLE, without affecting their anti-IgM responses or affecting their cytokine production. Consistent with the differences of their effects on B cell responses, KPL-404 was not internalized by cells, whereas G28-5 showed partial internalization upon CD40 binding. CONCLUSIONS: Anti-CD40 mAb KPL-404 showed purely antagonistic effects on B cells and total PBMCs. KPL-404 inhibited CD40L-CD40-mediated B cell activation in PBMC cultures from both healthy controls and autoimmune patients. These data support the therapeutic potential of CD40 targeting by KPL-404 Ab for inhibiting B cell responses in SjS and SLE.


Assuntos
Anticorpos/imunologia , Linfócitos B/imunologia , Antígenos CD40 , Lúpus Eritematoso Sistêmico/imunologia , Síndrome de Sjogren/imunologia , Linfócitos T/imunologia , Antígenos CD40/imunologia , Ligante de CD40 , Humanos , Leucócitos Mononucleares , Ativação Linfocitária
10.
Science ; 355(6327): 842-847, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28104796

RESUMO

Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor-deficient (Ldlr-/-) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome-mediated interleukin-1ß secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis.


Assuntos
Aterosclerose/genética , Proteínas de Ligação a DNA/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas Proto-Oncogênicas/genética , Animais , Dioxigenases , Inflamassomos/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Placa Aterosclerótica/genética , Receptores de LDL/genética
13.
Front Oncol ; 5: 231, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528440

RESUMO

Exposure of individuals to ionizing radiation (IR), as in the case of astronauts exploring space or radiotherapy cancer patients, increases their risk of developing secondary cancers and other health-related problems. Bone marrow (BM), the site in the body where hematopoietic stem cell (HSC) self-renewal and differentiation to mature blood cells occurs, is extremely sensitive to low-dose IR, including irradiation by high-charge and high-energy particles. Low-dose IR induces DNA damage and persistent oxidative stress in the BM hematopoietic cells. Inefficient DNA repair processes in HSC and early hematopoietic progenitors can lead to an accumulation of mutations whereas long-lasting oxidative stress can impair hematopoiesis itself, thereby causing long-term damage to hematopoietic cells in the BM niche. We report here that low-dose (1)H- and (56)Fe-IR significantly decreased the hematopoietic early and late multipotent progenitor (E- and L-MPP, respectively) cell numbers in mouse BM over a period of up to 10 months after exposure. Both (1)H- and (56)Fe-IR increased the expression of pluripotent stem cell markers Sox2, Nanog, and Oct4 in L-MPPs and 10 months post-IR exposure. We postulate that low doses of (1)H- and (56)Fe-IR may induce endogenous cellular reprogramming of BM hematopoietic progenitor cells to assume a more primitive pluripotent phenotype and that IR-induced oxidative DNA damage may lead to mutations in these BM progenitors. This could then be propagated to successive cell lineages. Persistent impairment of BM progenitor cell populations can disrupt hematopoietic homeostasis and lead to hematologic disorders, and these findings warrant further mechanistic studies into the effects of low-dose IR on the functional capacity of BM-derived hematopoietic cells including their self-renewal and pluripotency.

14.
Stem Cells Int ; 2015: 496512, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074973

RESUMO

Bone-marrow- (BM-) derived endothelial progenitor cells (EPCs) are critical for endothelial cell maintenance and repair. During future space exploration missions astronauts will be exposed to space irradiation (IR) composed of a spectrum of low-fluence protons ((1)H) and high charge and energy (HZE) nuclei (e.g., iron-(56)Fe) for extended time. How the space-type IR affects BM-EPCs is limited. In media transfer experiments in vitro we studied nontargeted effects induced by (1)H- and (56)Fe-IR conditioned medium (CM), which showed significant increase in the number of p-H2AX foci in nonirradiated EPCs between 2 and 24 h. A 2-15-fold increase in the levels of various cytokines and chemokines was observed in both types of IR-CM at 24 h. Ex vivo analysis of BM-EPCs from single, low-dose, full-body (1)H- and (56)Fe-IR mice demonstrated a cyclical (early 5-24 h and delayed 28 days) increase in apoptosis. This early increase in BM-EPC apoptosis may be the effect of direct IR exposure, whereas late increase in apoptosis could be a result of nontargeted effects (NTE) in the cells that were not traversed by IR directly. Identifying the role of specific cytokines responsible for IR-induced NTE and inhibiting such NTE may prevent long-term and cyclical loss of stem and progenitors cells in the BM milieu.

16.
J Leukoc Biol ; 94(6): 1167-84, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23990626

RESUMO

Extensive research in the past decade has identified innate immune recognition receptors and intracellular signaling pathways that culminate in inflammatory responses. Besides its role in cytoprotection, the importance of cell stress in inflammation and host defense against pathogens is emerging. Recent studies have shown that proteins in cellular stress responses, including the heat shock response, ER stress response, and DNA damage response, interact with and regulate signaling intermediates involved in the activation of innate and adaptive immune responses. The effect of such regulation by cell stress proteins may dictate the inflammatory profile of the immune response during infection and disease. In this review, we describe the regulation of innate immune cell activation by cell stress pathways, present detailed descriptions of the types of stress response proteins and their crosstalk with immune signaling intermediates that are essential in host defense, and illustrate the relevance of these interactions in diseases characteristic of aberrant immune responses, such as chronic inflammatory diseases, autoimmune disorders, and cancer. Understanding the crosstalk between cellular stress proteins and immune signaling may have translational implications for designing more effective regimens to treat immune disorders.


Assuntos
Dano ao DNA , Estresse do Retículo Endoplasmático/imunologia , Resposta ao Choque Térmico/imunologia , Imunidade Inata , Inflamação/imunologia , Transdução de Sinais/imunologia , Animais , Humanos , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA