Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Genet Sel Evol ; 56(1): 56, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080565

RESUMO

BACKGROUND: Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright's fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). RESULTS: Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. CONCLUSIONS: In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.


Assuntos
Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Ovinos/genética , Homozigoto , Variação Genética , Estados Unidos , Endogamia , Carneiro Doméstico/genética , Cruzamento/métodos
2.
J Anim Breed Genet ; 141(3): 304-316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38108572

RESUMO

The Katahdin hair breed gained popularity in the United States as low input and prolific, with a propensity to exhibit parasite resistance. With the introduction of genomically enhanced estimated breeding values (GEBV) to the Katahdin genetic evaluation, defining the diversity present in the breed is pertinent. Utilizing pedigree records (n = 92,030) from 1984 to 2019 from the National Sheep Improvement Program, our objectives were to (i) estimate the completeness and quality of the pedigree, (ii) calculate diversity statistics for the whole pedigree and relevant reference subpopulations and (iii) assess the impact of current diversity on genomic selection. Reference 1 was Katahdins born from 2017 to 2019 (n = 23,494), while reference 2 was a subset with at least three generations of Katahdin ancestry (n = 9327). The completeness of the whole pedigree, and the pedigrees of reference 1 and reference 2, were above 50% through the fourth, fifth and seventh generation of ancestors, respectively. Effective population size (Ne) averaged 111 animals with a range from 42.2 to 451.0. The average generation interval was 2.9 years for the whole pedigree and reference 1, and 2.8 years for reference 2. The mean individual inbreeding and average relatedness coefficients were 1.62% and 0.91%, 1.74% and 0.90% and 2.94% and 1.46% for the whole pedigree, reference 1, and reference 2, respectively. There were over 300 effective founders in the whole pedigree and reference 1, with 169 in reference 2. Effective number of ancestors were over 150 for the whole pedigree and reference 1, while there were 67 for reference 2. Prediction accuracies increased as the reference population grew from 1k to 7.5k and plateaued at 15k animals. Given the large number of founders and ancestors contributing to the base genetic variation in the breed, the Ne is sufficient to maintain diversity while achieving progress with selection. Stable low rates of inbreeding and relatedness suggest that incorporating genetic conservation in breeding decisions is currently not of high priority. Current Ne suggests that with limited genotyping, high levels of accuracy for genomic prediction can be achieved. However, intense selection on GEBV may cause loss of genetic diversity long term.


Assuntos
Variação Genética , Endogamia , Ovinos/genética , Animais , Linhagem , Densidade Demográfica , Seleção Genética
3.
Mamm Genome ; 34(3): 418-436, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37460664

RESUMO

Current genome sequencing technologies have made it possible to generate highly contiguous genome assemblies for non-model animal species. Despite advances in genome assembly methods, there is still room for improvement in the delineation of specific gene features in the genomes. Here we present genome visualization and annotation tools to support seven livestock species (bovine, chicken, goat, horse, pig, sheep, and water buffalo), available in a new resource called AgAnimalGenomes. In addition to supporting the manual refinement of gene models, these browsers provide visualization tracks for hundreds of RNAseq experiments, as well as data generated by the Functional Annotation of Animal Genomes (FAANG) Consortium. For species with predicted gene sets from both Ensembl and RefSeq, the browsers provide special tracks showing the thousands of protein-coding genes that disagree across the two gene sources, serving as a valuable resource to alert researchers to gene model issues that may affect data interpretation. We describe the data and search methods available in the new genome browsers and how to use the provided tools to edit and create new gene models.


Assuntos
Animais Domésticos , Bases de Dados Genéticas , Animais , Bovinos , Suínos , Cavalos/genética , Ovinos/genética , Animais Domésticos/genética , Anotação de Sequência Molecular , Genoma/genética , Mapeamento Cromossômico , Cabras/genética
4.
Genomics ; 113(4): 1867-1875, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33831438

RESUMO

Human milk oligosaccharides (HMO), the third most abundant component of human milk, are thought to be important contributors to infant health. Studies have provided evidence that geography, stage of lactation, and Lewis and secretor blood groups are associated with HMO profile. However, little is known about how variation across the genome may influence HMO composition among women in various populations. In this study, we performed genome-wide association analyses of 395 women from 8 countries to identify genetic regions associated with 19 different HMO. Our data support FUT2 as the most significantly associated (P < 4.23-9 to P < 4.5-70) gene with seven HMO and provide evidence of balancing selection for FUT2. Although polymorphisms in FUT3 were also associated with variation in lacto-N-fucopentaose II and difucosyllacto-N-tetrose, we found little evidence of selection on FUT3. To our knowledge, this is the first report of the use of genome-wide association analyses on HMO.


Assuntos
Estudo de Associação Genômica Ampla , Leite Humano , Oligossacarídeos , Feminino , Humanos , Lactação , Leite Humano/química , Oligossacarídeos/química
5.
Cytogenet Genome Res ; 156(2): 106-116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296783

RESUMO

Meiotic recombination is an important contributor to genetic variation and ensures proper chromosome segregation during gametogenesis. Previous studies suggest that at least 1 crossover (CO) per chromosome arm is important to avoid mis-segregation. While the total number of COs per spermatocyte is known to differ in mice, this is only beginning to be evaluated in sheep. This study used a cytogenetic approach to quantify and compare the number of COs per spermatocyte in rams from 3 breeds of sheep: Suffolk, Icelandic, and Targhee. In total, 2,758 spermatocytes and over 170,000 COs were examined. Suffolk rams exhibited the lowest mean number of COs (61.1 ± 0.15) compared to Icelandic (63.5 ± 0.27) and Targhee (65.9 ± 0.26) rams. Significant differences in the number of COs per spermatocyte were observed between Suffolk, Icelandic, and Targhee breeds as well as within each breed. Additionally, the number and location of COs were characterized for homologous chromosomes in a subset of spermatocytes for each ram. A positive correlation was identified between the number of COs and the length of the homologous chromosome pair. Suffolk and Icelandic rams exhibited up to 7 COs per chromosome, while Targhee rams exhibited up to 9. Further, distinct CO location preferences on homologous chromosome pairs with 1, 2, 3, and 4 COs were observed in all 3 breeds. These data in sheep will aid in elucidating the mechanism of mammalian meiotic recombination, an important contributor to genetic diversity.

6.
Front Genet ; 15: 1398123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859938

RESUMO

Introduction: Improving ewe longevity is an important breeding and management goal, as death loss and early culling of mature ewes are economic burdens in the sheep industry. Ewe longevity can be improved by selecting for positive reproductive outcomes. However, the breeding approaches for accomplishing this come with the challenge of recording a lifetime trait. Characterizing genetic factors underpinning ewe longevity and related traits could result in the development of genomic selection strategies to improve the stayability of sheep through early, informed selection of replacement ewes. Methods: Towards this aim, a genome-wide association study (GWAS) was performed to identify genetic markers associated with ewe longevity, reproductive, and production traits. Traits evaluated included longevity (i.e., length of time in the flock), parity and the lifetime number of lambs born, lambs born alive, lambs weaned, and weight of lambs weaned. Ewe records from previous studies were used. Specifically, Rambouillet (n = 480), Polypay (n = 404), Suffolk (n = 182), and Columbia (n = 64) breed ewes (N = 1,130) were analyzed against 503,617 SNPs in across-breed and within-breed GWAS conducted with the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model in R. Results: The across-breed GWAS identified 25 significant SNPs and the within-breed GWAS for Rambouillet, Polypay, and Suffolk ewes identified an additional 19 significant SNPs. The most significant markers were rs411309094 (13:22,467,143) associated with longevity in across-breed GWAS (p-value = 8.3E-13) and rs429525276 (2:148,398,336) associated with both longevity (p-value = 6.4E-15) and parity (p-value = 4.8E-15) in Rambouillet GWAS. Significant SNPs were identified within or in proximity (±50 kb) of genes with known or proposed roles in reproduction, dentition, and the immune system. These genes include ALPL, ANOS1, ARHGEF26, ASIC2, ASTN2, ATP8A2, CAMK2D, CEP89, DISC1, ITGB6, KCNH8, MBNL3, MINDY4, MTSS1, PLEKHA7, PRIM2, RNF43, ROBO2, SLCO1A2, TMEM266, TNFRSF21, and ZNF804B. Discussion: This study proposes multiple SNPs as candidates for use in selection indices and suggests genes for further research towards improving understanding of the genetic factors contributing to longevity, reproductive, and production traits of ewes.

7.
PLoS One ; 19(7): e0299975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959242

RESUMO

Skeletal muscle growth is an economically important trait in the cattle industry. Secreted muscle-derived proteins, referred to as myokines, have important roles in regulating the growth, metabolism, and health of skeletal muscle in human and biomedical research models. Accumulating evidence supports the importance of myokines in skeletal muscle and whole-body health, though little is known about the potential presence and functional significance of these proteins in cattle. This study evaluates and confirms that secreted proteins acidic and rich in cysteine (SPARC), fibroblast growth factor 21 (FGF-21), myostatin (MSTN), and decorin (DCN) are expressed and SPARC, FGF-21, and DCN are secreted by primary bovine satellite cells from 3- (BSC3; n = 3) and 11- (BSC11; n = 3) month -old commercial angus steers. Cells were cultured and collected at zero, 12, 24, and 48 hours to characterize temporal expression and secretion from undifferentiated and differentiated cells. The expression of SPARC was higher in the undifferentiated (p = 0.04) and differentiated (p = 0.07) BSC11 than BSC3. The same was observed with protein secretion from undifferentiated (p <0.0001) BSC11 compared to BSC3. Protein secretion of FGF-21 was higher in undifferentiated BSC11 (p < 0.0001) vs. BSC3. DCN expression was higher in differentiated BSC11 (p = 0.006) vs. BSC3. Comparing undifferentiated vs. differentiated BSC, MSTN expression was higher in differentiated BSC3 (p ≤ 0.001) for 0, 12, and 24 hours and in BSC11 (p ≤ 0.03) for 0, 12, 24, and 48 hours. There is also a change over time for SPARC expression (p ≤ 0.03) in undifferentiated and differentiated BSC and protein secretion (p < 0.0001) in undifferentiated BSC, as well as FGF-21 expression (p = 0.007) in differentiated BSC. This study confirms SPARC, FGF-21, and DCN are secreted, and SPARC, FGF-21, MSTN, and DCN are expressed in primary bovine muscle cells with age and temporal differences.


Assuntos
Diferenciação Celular , Decorina , Fatores de Crescimento de Fibroblastos , Osteonectina , Animais , Bovinos , Osteonectina/metabolismo , Osteonectina/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Decorina/metabolismo , Células Cultivadas , Masculino , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Envelhecimento/metabolismo , Miostatina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia
8.
Genes (Basel) ; 15(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927701

RESUMO

Heifer conception rate to the first service (HCR1) is defined as the number of heifers that become pregnant to the first breeding service compared to the heifers bred. This study aimed to identify loci associated and gene sets enriched for HCR1 for heifers that were bred by artificial insemination (AI, n = 2829) or were embryo transfer (ET, n = 2086) recipients, by completing a genome-wide association analysis and gene set enrichment analysis using SNP data (GSEA-SNP). Three unique loci, containing four positional candidate genes, were associated (p < 1 × 10-5) with HCR1 for ET recipients, while the GSEA-SNP identified four gene sets (NES ≥ 3) and sixty-two leading edge genes (LEGs) enriched for HCR1. While no loci were associated with HCR1 bred by AI, one gene set and twelve LEGs were enriched (NES ≥ 3) for HCR1 with the GSEA-SNP. This included one gene (PKD2) shared between HCR1 AI and ET services. Identifying loci associated or enriched for HCR1 provides an opportunity to use them as genomic selection tools to facilitate the selection of cattle with higher reproductive efficiency, and to better understand embryonic loss.


Assuntos
Transferência Embrionária , Estudo de Associação Genômica Ampla , Inseminação Artificial , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Feminino , Transferência Embrionária/métodos , Transferência Embrionária/veterinária , Inseminação Artificial/veterinária , Gravidez , Estudo de Associação Genômica Ampla/métodos , Fertilização/genética , Cruzamento/métodos , Taxa de Gravidez , Genoma/genética
9.
Vet Parasitol ; 328: 110177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583271

RESUMO

Infection by gastrointestinal nematodes (GIN), particularly Haemonchus contortus, can be detrimental to sheep health and performance. Genetic susceptibility to GIN varies between breeds, with those lacking high levels of natural resistance often requiring frequent anthelmintic treatment when facing parasitic challenge. Genetic technology can serve as a tool to decrease GIN susceptibility via selection for sheep with reduced fecal egg count (FEC) estimated breeding values (EBVs). However, the physiological changes that result from implementation of this strategy are not well described. Additionally, there is a need for comparison of animals from recent selective breeding against breeds with inherent GIN resistance. In this study we administered a challenge of H. contortus to Dorper x White Dorper (DWD; n = 92) lambs that have been genetically selected for either low (DWD-) or high (DWD+) FEC EBVs and Barbados Blackbelly x Mouflon (BBM; n = 19) lambs from a genetically resistant breed backgrounds. Lamb FEC, packed-cell volume (PCV) and serum IgG were measured at intermittent levels over 5 weeks. At day 21 and day 35, the selectively bred DWD- had a lower mean FEC compared to DWD+, but were higher than BBM. Reductions in both PCV and serum IgG from initial day 0 levels were observed in DWD lambs, but not in BBM. Furthermore, from a subset of lambs (n = 24) harvested at day 21, DWD- only tended (p = 0.056) to have lower mean worm counts than DWD+, with BBM having the lowest mean worm count. Differentially expressed genes (DEGs) identified via RNA-sequencing of abomasal tissue at day 21 indicate a more pronounced Th2 immune response and more rapid worm expulsion occurred in iBBM than iDWD- and iDWD+ lambs. However, gene expression in DWD- suggests an association between reduced FEC EBV and gastric acid secretion and the ability to limit worm fecundity. Ultimately, selection of Dorper sheep for low FEC EBV can reduce susceptibility to GIN, but it will likely require multiple generations with this trait as a breeding priority before presenting a similar resistance level to Caribbean breeds.


Assuntos
Fezes , Hemoncose , Haemonchus , Contagem de Ovos de Parasitas , Doenças dos Ovinos , Animais , Ovinos , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/genética , Hemoncose/veterinária , Hemoncose/parasitologia , Hemoncose/imunologia , Contagem de Ovos de Parasitas/veterinária , Fezes/parasitologia , Seleção Artificial , Masculino , Feminino , Predisposição Genética para Doença , Cruzamento
10.
Animals (Basel) ; 14(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473094

RESUMO

The myokines interleukin 6 (IL-6), interleukin 15 (IL-15), myonectin (CTRP15), fibronectin type III domain containing protein 5/irisin (FNDC5), and brain-derived neurotrophic factor (BDNF) are associated with skeletal muscle cell proliferation, differentiation, and muscle hypertrophy in biomedical model species. This study evaluated whether these myokines are produced by cultured bovine satellite cells (BSCs) harvested from 3- and 11-month-old commercial black Angus steers and if the expression and secretion of these targets change across 0, 12, 24, and 48 h in vitro. IL-6, IL-15, FNDC5, and BDNF expression were greater (p ≤ 0.05) in the differentiated vs. undifferentiated BSCs at 0, 12, 24, and 48 h. CTRP15 expression was greater (p ≤ 0.03) in the undifferentiated vs. differentiated BSCs at 24 and 48 h. IL-6 and CTRP15 protein from culture media were greater (p ≤ 0.04) in undifferentiated vs. differentiated BSCs at 0, 12, 24, and 48 h. BDNF protein was greater in the media of differentiated vs. undifferentiated BSCs at 0, 12, 24, and 48 h. IL-6, 1L-15, FNDC5, and BDNF are expressed in association with BSC differentiation, and CTRP15 appears to be expressed in association with BSC proliferation. This study also confirms IL-6, IL-15, CTRP15, and BDNF proteins present in media collected from primary cultures of BSCs.

11.
Gigascience ; 132024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626724

RESUMO

BACKGROUND: The accurate identification of the functional elements in the bovine genome is a fundamental requirement for high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. RESULTS: A total of 160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets (PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5' untranslated regions were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available quantitative trait loci data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. CONCLUSIONS: These validated results show significant improvement over current bovine genome annotations.


Assuntos
Perfilação da Expressão Gênica , Genômica , Bovinos/genética , Animais , Análise de Sequência de RNA , Transcriptoma , Locos de Características Quantitativas , RNA , Isoformas de Proteínas , Anotação de Sequência Molecular
12.
Nat Genet ; 56(8): 1566-1573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103649

RESUMO

Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.


Assuntos
Ruminantes , Telômero , Telômero/genética , Animais , Ruminantes/genética , Evolução Molecular , Genoma/genética , Seleção Genética , Filogenia , Diploide
13.
Genome Biol ; 25(1): 8, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172911

RESUMO

Dramatic improvements in measuring genetic variation across agriculturally relevant populations (genomics) must be matched by improvements in identifying and measuring relevant trait variation in such populations across many environments (phenomics). Identifying the most critical opportunities and challenges in genome to phenome (G2P) research is the focus of this paper. Previously (Genome Biol, 23(1):1-11, 2022), we laid out how Agricultural Genome to Phenome Initiative (AG2PI) will coordinate activities with USA federal government agencies expand public-private partnerships, and engage with external stakeholders to achieve a shared vision of future the AG2PI. Acting on this latter step, AG2PI organized the "Thinking Big: Visualizing the Future of AG2PI" two-day workshop held September 9-10, 2022, in Ames, Iowa, co-hosted with the United State Department of Agriculture's National Institute of Food and Agriculture (USDA NIFA). During the meeting, attendees were asked to use their experience and curiosity to review the current status of agricultural genome to phenome (AG2P) work and envision the future of the AG2P field. The topic summaries composing this paper are distilled from two 1.5-h small group discussions. Challenges and solutions identified across multiple topics at the workshop were explored. We end our discussion with a vision for the future of agricultural progress, identifying two areas of innovation needed: (1) innovate in genetic improvement methods development and evaluation and (2) innovate in agricultural research processes to solve societal problems. To address these needs, we then provide six specific goals that we recommend be implemented immediately in support of advancing AG2P research.


Assuntos
Agricultura , Fenômica , Estados Unidos , Genômica
14.
J Anim Sci Biotechnol ; 14(1): 127, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779189

RESUMO

BACKGROUND: Pan-genomics is a recently emerging strategy that can be utilized to provide a more comprehensive characterization of genetic variation. Joint calling is routinely used to combine identified variants across multiple related samples. However, the improvement of variants identification using the mutual support information from multiple samples remains quite limited for population-scale genotyping. RESULTS: In this study, we developed a computational framework for joint calling genetic variants from 5,061 sheep by incorporating the sequencing error and optimizing mutual support information from multiple samples' data. The variants were accurately identified from multiple samples by using four steps: (1) Probabilities of variants from two widely used algorithms, GATK and Freebayes, were calculated by Poisson model incorporating base sequencing error potential; (2) The variants with high mapping quality or consistently identified from at least two samples by GATK and Freebayes were used to construct the raw high-confidence identification (rHID) variants database; (3) The high confidence variants identified in single sample were ordered by probability value and controlled by false discovery rate (FDR) using rHID database; (4) To avoid the elimination of potentially true variants from rHID database, the variants that failed FDR were reexamined to rescued potential true variants and ensured high accurate identification variants. The results indicated that the percent of concordant SNPs and Indels from Freebayes and GATK after our new method were significantly improved 12%-32% compared with raw variants and advantageously found low frequency variants of individual sheep involved several traits including nipples number (GPC5), scrapie pathology (PAPSS2), seasonal reproduction and litter size (GRM1), coat color (RAB27A), and lentivirus susceptibility (TMEM154). CONCLUSION: The new method used the computational strategy to reduce the number of false positives, and simultaneously improve the identification of genetic variants. This strategy did not incur any extra cost by using any additional samples or sequencing data information and advantageously identified rare variants which can be important for practical applications of animal breeding.

15.
Genes (Basel) ; 14(7)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37510248

RESUMO

The anthelmintic resistance of gastrointestinal nematodes (GINs) poses a significant threat to sheep worldwide, but genomic selection can serve as an alternative to the use of chemical treatment as a solution for parasitic infection. The objective of this study is to conduct genome-wide association studies (GWASs) to identify single nucleotide polymorphisms (SNPs) in Rambouillet (RA) and Dorper × White Dorper (DWD) lambs associated with the biological response to a GIN infection. All lambs were genotyped with a medium-density genomic panel with 40,598 markers used for analysis. Separate GWASs were conducted using fecal egg counts (FECs) from lambs (<1 year of age) that acquired their artificial infections via an oral inoculation of 10,000 Haemonchus contortus larvae (n = 145) or naturally while grazing on pasture (n = 184). A GWAS was also performed for packed cell volume (PCV) in artificially GIN-challenged lambs. A total of 26 SNPs exceeded significance and 21 SNPs were in or within 20 kb of genes such as SCUBE1, GALNT6, IGF1R, CAPZB and PTK2B. The ontology analysis of candidate genes signifies the importance of immune cell development, mucin production and cellular signaling for coagulation and wound healing following epithelial damage in the abomasal gastric pits via H. contortus during GIN infection in lambs. These results add to a growing body of the literature that promotes the use of genomic selection for increased sheep resistance to GINs.


Assuntos
Hemoncose , Nematoides , Doenças dos Ovinos , Animais , Ovinos/genética , Estudo de Associação Genômica Ampla , Doenças dos Ovinos/genética , Doenças dos Ovinos/parasitologia , Hemoncose/genética , Hemoncose/veterinária , Nematoides/genética , Trato Gastrointestinal
16.
Sci Rep ; 13(1): 16059, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749158

RESUMO

Angular limb deformity (ALD) affects many species of livestock and companion animals. The mechanisms of ALD development are not well understood, but previous research suggests the involvement of genetic risk factors. A case-control genome-wide association study (GWAS) was conducted with 40 ALD-affected and 302 unaffected Rambouillet rams and 40,945 single nucleotide polymorphisms (SNPs). Forelimbs of 6 ALD-affected rams were examined and diagnosed with osteochondrosis. Genome-wide or chromosome-wide significant SNPs were positioned exonic, intronic or within the 3'UTR of genes TSPAN18, NRG3 and NOVA2, respectively. These genes have previously described roles related to angiogenesis and osteoblast, osteoclast and chondrocyte proliferation and differentiation, which suggests the possibility for their involvement in the pathogenesis of osteochondrosis. Functional consequences of SNPs were evaluated through transcription factor binding site analysis, which predicted binding sites for transcription factors of known importance to bone growth, including SOX6, SOX9 and RUNX2. The identification of genetic risk factors for ALD may help to improve animal welfare and production in Rambouillet, a breed known to be at risk for ALD development. This study proposes genes TSPAN18, NRG3 and NOVA2 as targets for further research towards understanding the etiology of ALD in Rambouillet sheep.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas do Tecido Nervoso , Animais , Masculino , Ovinos/genética , Íntrons/genética , Proteínas de Ligação a RNA/genética , Éxons
17.
Genes (Basel) ; 14(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37628680

RESUMO

Osteogenesis is a developmental process critical for structural support and the establishment of a dynamic reservoir for calcium and phosphorus. Changes in livestock breeding over the past 100 years have resulted in earlier bone development and increased physical size of cattle. Advanced skeletal maturity is now commonly observed at harvest, with heifers displaying more mature bone than is expected at 30 months of age (MOA). We surmise that selection for growth traits and earlier reproductive maturity resulted in co-selection for accelerated skeletal ossification. This study examines the relationship of single nucleotide polymorphisms (SNPs) in 793 beef heifers under 30 MOA with USDA-graded skeletal maturity phenotypes (A-, B-, C- skeletal maturity). Further, the estrogen content of FDA-approved hormonal implants provided to heifers prior to harvest was evaluated in association with the identified SNPs and maturities. Association tests were performed, and the impact of the implants were evaluated as covariates against genotypes using a logistic regression model. SNPs from the ESR1, ALPL, PPARGC1B, SORCS1 genes, and SNPs near KLF14, ANKRD61, USP42, H1C1, OVCA2, microRNA mir-29a were determined to be associated with the advanced skeletal ossification phenotype in heifers. Higher dosage estrogen implants increased skeletal maturity in heifers with certain SNP genotypes.


Assuntos
Desenvolvimento Ósseo , Osteogênese , Bovinos/genética , Animais , Feminino , Osteogênese/genética , Genótipo , Osso e Ossos , Estrogênios
18.
Front Genet ; 13: 1081175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36755873

RESUMO

Introduction: Fine wool production is an important source of revenue, accounting for up to 13% of total revenue in extensively managed wool sheep production systems of the United States. The Rambouillet are a predominant breed that excels in wool quality characteristics. Understanding the genetic basis of wool quality characteristics would aid in the development of genomic breeding strategies to facilitate genetic improvement. Methods: Wool characteristics and DNA were collected for rams enrolled in the North Dakota State University and University of Wyoming annual central performance ram tests over a three-year period (2019-2021, N = 313). The relationships of wool quality characteristics including grease fleece weight adjusted 365 days (wt. 365 adj.), clean fleece wt. 365 adj., staple length 365 adj., average fiber diameter, face wool cover, amount of skin wrinkles and belly wool were evaluated through genome-wide association studies (GWAS), Pearson correlation and ANOVA. Results: The GWAS identified four genome-wide significant genetic markers (p-value <1.19e-06) and five chromosome-wide significant markers (p-value <1.13e-05) on chromosomes 1, 2, 4, 15, and 19. Significant markers were associated with genes notable for relevant wool biological functions, including the gene ABCC8 which codes for SUR1, an ATP-sensitive potassium channel known to affect hair growth and 60S ribosomal protein L17-like, previously found to be expressed during follicle formation. The strongest Pearson correlation coefficients were identified between clean fleece wt. 365 adj. and grease fleece wt. 365 adj. (r = 0.83) and between clean fleece wt. 365 adj. and staple length 365 adj. (r = 0.53). Additionally, clean fleece wt. 365 adj. was correlated with final body weight (r = 0.35) and scrotal circumference (r = 0.16). Staple length 365 adj. (p-value = 5e-04), average fiber diameter (p-value = .0053) and clean fleece wt. 365 adj. (p-value = .014) were significantly associated with belly wool score. Discussion: The results of this study provide important insight into the relationships between wool quality characteristics and report specific markers that Rambouillet sheep producers may use to help inform selection and breeding decisions for improved wool quality.

19.
Animals (Basel) ; 12(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35565625

RESUMO

Gastrointestinal nematodes (GIN) threaten the productivity and health of sheep worldwide, prompting the need for genetic selection to reduce GIN susceptibility. Fecal egg count (FEC), packed-cell volume (PCV), and various production traits were examined in parasitized Rambouillet sheep and compared to sire FEC estimated breeding value (EBV). Rambouillet lambs (n = 77) were inoculated with 10,000 H. contortus L3 larvae. Subsequently, FEC, PCV, and body weight (BW) were captured at seven-day intervals for six weeks. Lambs were sired by one of two rams with post-weaning FEC EBV of −9% or +9%. Mean FEC differed (p = 0.0132) with lambs from the lower EBV sire ("Sire L") being reduced, versus those from the higher EBV sire ("Sire H"), being 2135 ± 211 vs. 2912 ± 207 eggs per gram, respectively. Males and females did not differ for FEC, but females exhibited a higher mean PCV than males, (33.74 vs. 29.65%, p < 0.0001). Lambs were shorn ~120 d post artificial infection and wool measurements were captured. A negative correlation between FEC and grease fleece weight was observed. Our results describe the response of Rambouillet lambs to artificial H. contortus infection and suggest FEC EBV can reduce susceptibility to GIN in this breed.

20.
Front Genet ; 13: 1060882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685812

RESUMO

As whole genome sequence (WGS) data sets have become abundant and widely available, so has the need for variant detection and scoring. The aim of this study was to compare the accuracy of commonly used variant calling programs, Freebayes and GATK HaplotypeCaller (GATK-HC), and to use U.S. sheep WGS data sets to identify novel breed-associated SNPs. Sequence data from 145 sheep consisting of 14 U.S. breeds were filtered and biallelic single nucleotide polymorphisms (SNPs) were retained for genotyping analyses. Genotypes from both programs were compared to each other and to genotypes from bead arrays. The SNPs from WGS were compared to the bead array data with breed heterozygosity, principal component analysis and identifying breed associated SNPs to analyze genetic diversity. The average sequence read depth was 2.78 reads greater with 6.11% more SNPs being identified in Freebayes compared to GATK-HC. The genotype concordance of the variant callers to bead array data was 96.0% and 95.5% for Freebayes and GATK-HC, respectively. Genotyping with WGS identified 10.5 million SNPs from all 145 sheep. This resulted in an 8% increase in measured heterozygosity and greater breed separation in the principal component analysis compared to the bead array analysis. There were 1,849 SNPs identified in only the Romanov sheep where all 10 rams were homozygous for one allele and the remaining 135 sheep from 13 breeds were homozygous for the opposite allele. Both variant calling programs had greater than 95% concordance of SNPs with bead array data, and either was suitably accurate for ovine WGS data sets. The use of WGS SNPs improved the resolution of PCA analysis and was critical for identifying Romanov breed-associated SNPs. Subsets of such SNPs could be used to estimate germplasm composition in animals without pedigree information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA