Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Ano de publicação
Intervalo de ano de publicação
1.
Genet Sel Evol ; 56(1): 56, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080565

RESUMO

BACKGROUND: Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright's fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). RESULTS: Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. CONCLUSIONS: In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.


Assuntos
Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Ovinos/genética , Homozigoto , Variação Genética , Estados Unidos , Endogamia , Carneiro Doméstico/genética , Cruzamento/métodos
2.
J Anim Breed Genet ; 141(3): 304-316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38108572

RESUMO

The Katahdin hair breed gained popularity in the United States as low input and prolific, with a propensity to exhibit parasite resistance. With the introduction of genomically enhanced estimated breeding values (GEBV) to the Katahdin genetic evaluation, defining the diversity present in the breed is pertinent. Utilizing pedigree records (n = 92,030) from 1984 to 2019 from the National Sheep Improvement Program, our objectives were to (i) estimate the completeness and quality of the pedigree, (ii) calculate diversity statistics for the whole pedigree and relevant reference subpopulations and (iii) assess the impact of current diversity on genomic selection. Reference 1 was Katahdins born from 2017 to 2019 (n = 23,494), while reference 2 was a subset with at least three generations of Katahdin ancestry (n = 9327). The completeness of the whole pedigree, and the pedigrees of reference 1 and reference 2, were above 50% through the fourth, fifth and seventh generation of ancestors, respectively. Effective population size (Ne) averaged 111 animals with a range from 42.2 to 451.0. The average generation interval was 2.9 years for the whole pedigree and reference 1, and 2.8 years for reference 2. The mean individual inbreeding and average relatedness coefficients were 1.62% and 0.91%, 1.74% and 0.90% and 2.94% and 1.46% for the whole pedigree, reference 1, and reference 2, respectively. There were over 300 effective founders in the whole pedigree and reference 1, with 169 in reference 2. Effective number of ancestors were over 150 for the whole pedigree and reference 1, while there were 67 for reference 2. Prediction accuracies increased as the reference population grew from 1k to 7.5k and plateaued at 15k animals. Given the large number of founders and ancestors contributing to the base genetic variation in the breed, the Ne is sufficient to maintain diversity while achieving progress with selection. Stable low rates of inbreeding and relatedness suggest that incorporating genetic conservation in breeding decisions is currently not of high priority. Current Ne suggests that with limited genotyping, high levels of accuracy for genomic prediction can be achieved. However, intense selection on GEBV may cause loss of genetic diversity long term.


Assuntos
Variação Genética , Endogamia , Ovinos/genética , Animais , Linhagem , Densidade Demográfica , Seleção Genética
3.
Animals (Basel) ; 14(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473094

RESUMO

The myokines interleukin 6 (IL-6), interleukin 15 (IL-15), myonectin (CTRP15), fibronectin type III domain containing protein 5/irisin (FNDC5), and brain-derived neurotrophic factor (BDNF) are associated with skeletal muscle cell proliferation, differentiation, and muscle hypertrophy in biomedical model species. This study evaluated whether these myokines are produced by cultured bovine satellite cells (BSCs) harvested from 3- and 11-month-old commercial black Angus steers and if the expression and secretion of these targets change across 0, 12, 24, and 48 h in vitro. IL-6, IL-15, FNDC5, and BDNF expression were greater (p ≤ 0.05) in the differentiated vs. undifferentiated BSCs at 0, 12, 24, and 48 h. CTRP15 expression was greater (p ≤ 0.03) in the undifferentiated vs. differentiated BSCs at 24 and 48 h. IL-6 and CTRP15 protein from culture media were greater (p ≤ 0.04) in undifferentiated vs. differentiated BSCs at 0, 12, 24, and 48 h. BDNF protein was greater in the media of differentiated vs. undifferentiated BSCs at 0, 12, 24, and 48 h. IL-6, 1L-15, FNDC5, and BDNF are expressed in association with BSC differentiation, and CTRP15 appears to be expressed in association with BSC proliferation. This study also confirms IL-6, IL-15, CTRP15, and BDNF proteins present in media collected from primary cultures of BSCs.

4.
PLoS One ; 19(7): e0299975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959242

RESUMO

Skeletal muscle growth is an economically important trait in the cattle industry. Secreted muscle-derived proteins, referred to as myokines, have important roles in regulating the growth, metabolism, and health of skeletal muscle in human and biomedical research models. Accumulating evidence supports the importance of myokines in skeletal muscle and whole-body health, though little is known about the potential presence and functional significance of these proteins in cattle. This study evaluates and confirms that secreted proteins acidic and rich in cysteine (SPARC), fibroblast growth factor 21 (FGF-21), myostatin (MSTN), and decorin (DCN) are expressed and SPARC, FGF-21, and DCN are secreted by primary bovine satellite cells from 3- (BSC3; n = 3) and 11- (BSC11; n = 3) month -old commercial angus steers. Cells were cultured and collected at zero, 12, 24, and 48 hours to characterize temporal expression and secretion from undifferentiated and differentiated cells. The expression of SPARC was higher in the undifferentiated (p = 0.04) and differentiated (p = 0.07) BSC11 than BSC3. The same was observed with protein secretion from undifferentiated (p <0.0001) BSC11 compared to BSC3. Protein secretion of FGF-21 was higher in undifferentiated BSC11 (p < 0.0001) vs. BSC3. DCN expression was higher in differentiated BSC11 (p = 0.006) vs. BSC3. Comparing undifferentiated vs. differentiated BSC, MSTN expression was higher in differentiated BSC3 (p ≤ 0.001) for 0, 12, and 24 hours and in BSC11 (p ≤ 0.03) for 0, 12, 24, and 48 hours. There is also a change over time for SPARC expression (p ≤ 0.03) in undifferentiated and differentiated BSC and protein secretion (p < 0.0001) in undifferentiated BSC, as well as FGF-21 expression (p = 0.007) in differentiated BSC. This study confirms SPARC, FGF-21, and DCN are secreted, and SPARC, FGF-21, MSTN, and DCN are expressed in primary bovine muscle cells with age and temporal differences.


Assuntos
Diferenciação Celular , Decorina , Fatores de Crescimento de Fibroblastos , Osteonectina , Animais , Bovinos , Osteonectina/metabolismo , Osteonectina/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Decorina/metabolismo , Células Cultivadas , Masculino , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/citologia , Envelhecimento/metabolismo , Miostatina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia
5.
Front Genet ; 15: 1398123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859938

RESUMO

Introduction: Improving ewe longevity is an important breeding and management goal, as death loss and early culling of mature ewes are economic burdens in the sheep industry. Ewe longevity can be improved by selecting for positive reproductive outcomes. However, the breeding approaches for accomplishing this come with the challenge of recording a lifetime trait. Characterizing genetic factors underpinning ewe longevity and related traits could result in the development of genomic selection strategies to improve the stayability of sheep through early, informed selection of replacement ewes. Methods: Towards this aim, a genome-wide association study (GWAS) was performed to identify genetic markers associated with ewe longevity, reproductive, and production traits. Traits evaluated included longevity (i.e., length of time in the flock), parity and the lifetime number of lambs born, lambs born alive, lambs weaned, and weight of lambs weaned. Ewe records from previous studies were used. Specifically, Rambouillet (n = 480), Polypay (n = 404), Suffolk (n = 182), and Columbia (n = 64) breed ewes (N = 1,130) were analyzed against 503,617 SNPs in across-breed and within-breed GWAS conducted with the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model in R. Results: The across-breed GWAS identified 25 significant SNPs and the within-breed GWAS for Rambouillet, Polypay, and Suffolk ewes identified an additional 19 significant SNPs. The most significant markers were rs411309094 (13:22,467,143) associated with longevity in across-breed GWAS (p-value = 8.3E-13) and rs429525276 (2:148,398,336) associated with both longevity (p-value = 6.4E-15) and parity (p-value = 4.8E-15) in Rambouillet GWAS. Significant SNPs were identified within or in proximity (±50 kb) of genes with known or proposed roles in reproduction, dentition, and the immune system. These genes include ALPL, ANOS1, ARHGEF26, ASIC2, ASTN2, ATP8A2, CAMK2D, CEP89, DISC1, ITGB6, KCNH8, MBNL3, MINDY4, MTSS1, PLEKHA7, PRIM2, RNF43, ROBO2, SLCO1A2, TMEM266, TNFRSF21, and ZNF804B. Discussion: This study proposes multiple SNPs as candidates for use in selection indices and suggests genes for further research towards improving understanding of the genetic factors contributing to longevity, reproductive, and production traits of ewes.

6.
Vet Parasitol ; 328: 110177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583271

RESUMO

Infection by gastrointestinal nematodes (GIN), particularly Haemonchus contortus, can be detrimental to sheep health and performance. Genetic susceptibility to GIN varies between breeds, with those lacking high levels of natural resistance often requiring frequent anthelmintic treatment when facing parasitic challenge. Genetic technology can serve as a tool to decrease GIN susceptibility via selection for sheep with reduced fecal egg count (FEC) estimated breeding values (EBVs). However, the physiological changes that result from implementation of this strategy are not well described. Additionally, there is a need for comparison of animals from recent selective breeding against breeds with inherent GIN resistance. In this study we administered a challenge of H. contortus to Dorper x White Dorper (DWD; n = 92) lambs that have been genetically selected for either low (DWD-) or high (DWD+) FEC EBVs and Barbados Blackbelly x Mouflon (BBM; n = 19) lambs from a genetically resistant breed backgrounds. Lamb FEC, packed-cell volume (PCV) and serum IgG were measured at intermittent levels over 5 weeks. At day 21 and day 35, the selectively bred DWD- had a lower mean FEC compared to DWD+, but were higher than BBM. Reductions in both PCV and serum IgG from initial day 0 levels were observed in DWD lambs, but not in BBM. Furthermore, from a subset of lambs (n = 24) harvested at day 21, DWD- only tended (p = 0.056) to have lower mean worm counts than DWD+, with BBM having the lowest mean worm count. Differentially expressed genes (DEGs) identified via RNA-sequencing of abomasal tissue at day 21 indicate a more pronounced Th2 immune response and more rapid worm expulsion occurred in iBBM than iDWD- and iDWD+ lambs. However, gene expression in DWD- suggests an association between reduced FEC EBV and gastric acid secretion and the ability to limit worm fecundity. Ultimately, selection of Dorper sheep for low FEC EBV can reduce susceptibility to GIN, but it will likely require multiple generations with this trait as a breeding priority before presenting a similar resistance level to Caribbean breeds.


Assuntos
Fezes , Hemoncose , Haemonchus , Contagem de Ovos de Parasitas , Doenças dos Ovinos , Animais , Ovinos , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/genética , Hemoncose/veterinária , Hemoncose/parasitologia , Hemoncose/imunologia , Contagem de Ovos de Parasitas/veterinária , Fezes/parasitologia , Seleção Artificial , Masculino , Feminino , Predisposição Genética para Doença , Cruzamento
7.
Genes (Basel) ; 15(6)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927701

RESUMO

Heifer conception rate to the first service (HCR1) is defined as the number of heifers that become pregnant to the first breeding service compared to the heifers bred. This study aimed to identify loci associated and gene sets enriched for HCR1 for heifers that were bred by artificial insemination (AI, n = 2829) or were embryo transfer (ET, n = 2086) recipients, by completing a genome-wide association analysis and gene set enrichment analysis using SNP data (GSEA-SNP). Three unique loci, containing four positional candidate genes, were associated (p < 1 × 10-5) with HCR1 for ET recipients, while the GSEA-SNP identified four gene sets (NES ≥ 3) and sixty-two leading edge genes (LEGs) enriched for HCR1. While no loci were associated with HCR1 bred by AI, one gene set and twelve LEGs were enriched (NES ≥ 3) for HCR1 with the GSEA-SNP. This included one gene (PKD2) shared between HCR1 AI and ET services. Identifying loci associated or enriched for HCR1 provides an opportunity to use them as genomic selection tools to facilitate the selection of cattle with higher reproductive efficiency, and to better understand embryonic loss.


Assuntos
Transferência Embrionária , Estudo de Associação Genômica Ampla , Inseminação Artificial , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Feminino , Transferência Embrionária/métodos , Transferência Embrionária/veterinária , Inseminação Artificial/veterinária , Gravidez , Estudo de Associação Genômica Ampla/métodos , Fertilização/genética , Cruzamento/métodos , Taxa de Gravidez , Genoma/genética
8.
Gigascience ; 132024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626724

RESUMO

BACKGROUND: The accurate identification of the functional elements in the bovine genome is a fundamental requirement for high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. RESULTS: A total of 160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets (PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5' untranslated regions were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available quantitative trait loci data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. CONCLUSIONS: These validated results show significant improvement over current bovine genome annotations.


Assuntos
Perfilação da Expressão Gênica , Genômica , Bovinos/genética , Animais , Análise de Sequência de RNA , Transcriptoma , Locos de Características Quantitativas , RNA , Isoformas de Proteínas , Anotação de Sequência Molecular
9.
Genome Biol ; 25(1): 8, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172911

RESUMO

Dramatic improvements in measuring genetic variation across agriculturally relevant populations (genomics) must be matched by improvements in identifying and measuring relevant trait variation in such populations across many environments (phenomics). Identifying the most critical opportunities and challenges in genome to phenome (G2P) research is the focus of this paper. Previously (Genome Biol, 23(1):1-11, 2022), we laid out how Agricultural Genome to Phenome Initiative (AG2PI) will coordinate activities with USA federal government agencies expand public-private partnerships, and engage with external stakeholders to achieve a shared vision of future the AG2PI. Acting on this latter step, AG2PI organized the "Thinking Big: Visualizing the Future of AG2PI" two-day workshop held September 9-10, 2022, in Ames, Iowa, co-hosted with the United State Department of Agriculture's National Institute of Food and Agriculture (USDA NIFA). During the meeting, attendees were asked to use their experience and curiosity to review the current status of agricultural genome to phenome (AG2P) work and envision the future of the AG2P field. The topic summaries composing this paper are distilled from two 1.5-h small group discussions. Challenges and solutions identified across multiple topics at the workshop were explored. We end our discussion with a vision for the future of agricultural progress, identifying two areas of innovation needed: (1) innovate in genetic improvement methods development and evaluation and (2) innovate in agricultural research processes to solve societal problems. To address these needs, we then provide six specific goals that we recommend be implemented immediately in support of advancing AG2P research.


Assuntos
Agricultura , Fenômica , Estados Unidos , Genômica
10.
Nat Genet ; 56(8): 1566-1573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103649

RESUMO

Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.


Assuntos
Ruminantes , Telômero , Telômero/genética , Animais , Ruminantes/genética , Evolução Molecular , Genoma/genética , Seleção Genética , Filogenia , Diploide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA