Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
N Engl J Med ; 389(7): 620-631, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37585628

RESUMO

BACKGROUND: Patients with the Crigler-Najjar syndrome lack the enzyme uridine diphosphoglucuronate glucuronosyltransferase 1A1 (UGT1A1), the absence of which leads to severe unconjugated hyperbilirubinemia that can cause irreversible neurologic injury and death. Prolonged, daily phototherapy partially controls the jaundice, but the only definitive cure is liver transplantation. METHODS: We report the results of the dose-escalation portion of a phase 1-2 study evaluating the safety and efficacy of a single intravenous infusion of an adeno-associated virus serotype 8 vector encoding UGT1A1 in patients with the Crigler-Najjar syndrome that was being treated with phototherapy. Five patients received a single infusion of the gene construct (GNT0003): two received 2×1012 vector genomes (vg) per kilogram of body weight, and three received 5×1012 vg per kilogram. The primary end points were measures of safety and efficacy; efficacy was defined as a serum bilirubin level of 300 µmol per liter or lower measured at 17 weeks, 1 week after discontinuation of phototherapy. RESULTS: No serious adverse events were reported. The most common adverse events were headache and alterations in liver-enzyme levels. Alanine aminotransferase increased to levels above the upper limit of the normal range in four patients, a finding potentially related to an immune response against the infused vector; these patients were treated with a course of glucocorticoids. By week 16, serum bilirubin levels in patients who received the lower dose of GNT0003 exceeded 300 µmol per liter. The patients who received the higher dose had bilirubin levels below 300 µmol per liter in the absence of phototherapy at the end of follow-up (mean [±SD] baseline bilirubin level, 351±56 µmol per liter; mean level at the final follow-up visit [week 78 in two patients and week 80 in the other], 149±33 µmol per liter). CONCLUSIONS: No serious adverse events were reported in patients treated with the gene-therapy vector GNT0003 in this small study. Patients who received the higher dose had a decrease in bilirubin levels and were not receiving phototherapy at least 78 weeks after vector administration. (Funded by Genethon and others; ClinicalTrials.gov number, NCT03466463.).


Assuntos
Síndrome de Crigler-Najjar , Terapia Genética , Glucuronosiltransferase , Humanos , Administração Intravenosa , Bilirrubina/sangue , Síndrome de Crigler-Najjar/sangue , Síndrome de Crigler-Najjar/complicações , Síndrome de Crigler-Najjar/genética , Síndrome de Crigler-Najjar/terapia , Dependovirus , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Glucuronosiltransferase/administração & dosagem , Glucuronosiltransferase/genética , Hiperbilirrubinemia/sangue , Hiperbilirrubinemia/etiologia , Hiperbilirrubinemia/genética , Hiperbilirrubinemia/terapia , Transplante de Fígado , Fototerapia
2.
Breast Cancer Res ; 25(1): 143, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964360

RESUMO

BACKGROUND: As in most solid cancers, the emergence of cells with oncogenic mutations in the mammary epithelium alters the tissue homeostasis. Some soluble factors, such as TGFß, potently modify the behavior of healthy stromal cells. A subpopulation of cancer-associated fibroblasts expressing a TGFß target, the SNAIL1 transcription factor, display myofibroblastic abilities that rearrange the stromal architecture. Breast tumors with the presence of SNAIL1 in the stromal compartment, and with aligned extracellular fiber, are associated with poor survival prognoses. METHODS: We used deep RNA sequencing and biochemical techniques to study alternative splicing and human tumor databases to test for associations (correlation t-test) between SNAIL1 and fibronectin isoforms. Three-dimensional extracellular matrices generated from fibroblasts were used to study the mechanical properties and actions of the extracellular matrices on tumor cell and fibroblast behaviors. A metastatic mouse model of breast cancer was used to test the action of fibronectin isoforms on lung metastasis. RESULTS: In silico studies showed that SNAIL1 correlates with the expression of the extra domain A (EDA)-containing (EDA+) fibronectin in advanced human breast cancer and other types of epithelial cancers. In TGFß-activated fibroblasts, alternative splicing of fibronectin as well as of 500 other genes was modified by eliminating SNAIL1. Biochemical analyses demonstrated that SNAIL1 favors the inclusion of the EDA exon by modulating the activity of the SRSF1 splicing factor. Similar to Snai1 knockout fibroblasts, EDA- fibronectin fibroblasts produce an extracellular matrix  that does not sustain TGFß-induced fiber organization, rigidity, fibroblast activation, or tumor cell invasion. The presence of EDA+ fibronectin changes the action of metalloproteinases on fibronectin fibers. Critically, in an mouse orthotopic breast cancer model, the absence of the fibronectin EDA domain completely prevents lung metastasis. CONCLUSIONS: Our results support the requirement of EDA+ fibronectin in the generation of a metastasis permissive stromal architecture in breast cancers and its molecular control by SNAIL1. From a pharmacological point of view, specifically blocking EDA+ fibronectin deposition could be included in studies to reduce the formation of a pro-metastatic environment.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Animais , Feminino , Humanos , Camundongos , Processamento Alternativo , Neoplasias da Mama/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142606

RESUMO

Bilirubin is a heme catabolite and Ugt1a1 is the only enzyme involved in the biological elimination of bilirubin. Partially functional or non-functional Ugt1a1 may result in neuronal damage and death due to the accumulation of unconjugated bilirubin in the brain. The understanding of the role of alternative bilirubin detoxification mechanisms that can reduce bilirubin toxicity risk is crucial for developing novel therapeutic strategies. To provide a proof-of-principle showing whether activation of alternative detoxification pathways could lead to life-compatible bilirubin levels in the absence of Ugt1a1 activity, we used Ugt1-/- hyperbilirubinemic mice devoid of bilirubin glucuronidation activity. We treated adult Ugt1-/- mice with TCPOBOP, a strong agonist of the constitutive androstane receptor (CAR). TCPOBOP treatment decreased plasma and liver tissue bilirubin levels by about 38%, and resulted in the transcriptional activation of a vast array of genes involved in bilirubin transport and metabolism. However, brain bilirubin level was unaltered. We observed ~40% degradation of bilirubin in the liver microsomes from TCPOBOP treated Ugt1-/- mice. Our findings suggest that, in the absence of Ugt1a1, the activation of alternative bilirubin clearance pathways can partially improve hyperbilirubinemic conditions. This therapeutic approach may only be considered in a combinatorial manner along with other treatments.


Assuntos
Bilirrubina , Hiperbilirrubinemia , Animais , Modelos Animais de Doenças , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Heme/metabolismo , Fígado/metabolismo , Camundongos
4.
Pediatr Res ; 87(1): 17-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31493769

RESUMO

The molecular and cellular events leading to bilirubin-induced neurotoxicity, the mechanisms regulating liver and intestine expression in neonates, and alternative pathways of bilirubin catabolism remain incompletely defined. To answer these questions, researchers have developed a number of model systems to closely recapitulate the main characteristics of the disease, ranging from tissue cultures to engineered mouse models. In the present review we describe in vitro, ex vivo, and in vivo models developed to study bilirubin metabolism and neurotoxicity, with a special focus on the use of engineered animal models. In addition, we discussed the most recent studies related to potential therapeutic approaches to treat neonatal hyperbilirubinemia, ranging from anti-inflammatory drugs, activation of nuclear receptor pathways, blockade of bilirubin catabolism, and stimulation of alternative bilirubin-disposal pathways.


Assuntos
Bilirrubina/metabolismo , Hiperbilirrubinemia/sangue , Hiperbilirrubinemia/complicações , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia , Animais , Bilirrubina/sangue , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hiperbilirrubinemia/genética , Hiperbilirrubinemia/metabolismo , Camundongos Transgênicos , Neurônios/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Transdução de Sinais
5.
Hum Mol Genet ; 26(1): 145-157, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025333

RESUMO

Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Bilirrubina/toxicidade , Cerebelo/patologia , Modelos Animais de Doenças , Glucuronosiltransferase/fisiologia , Hiperbilirrubinemia Neonatal/complicações , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Síndromes Neurotóxicas/etiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Animais Recém-Nascidos , Sobrevivência Celular , Cerebelo/efeitos dos fármacos , Feminino , Humanos , Hiperbilirrubinemia Neonatal/metabolismo , Hiperbilirrubinemia Neonatal/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia
6.
Brain Behav Immun ; 70: 166-178, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29458193

RESUMO

All pre-term newborns and a high proportion of term newborns develop neonatal jaundice. Neonatal jaundice is usually a benign condition and self-resolves within few days after birth. However, a combination of unfavorable complications may lead to acute hyperbilirubinemia. Excessive hyperbilirubinemia may be toxic for the developing nervous system leading to severe neurological damage and death by kernicterus. Survivors show irreversible neurological deficits such as motor, sensitive and cognitive abnormalities. Current therapies rely on the use of phototherapy and, in unresponsive cases, exchange transfusion, which is performed only in specialized centers. During bilirubin-induced neurotoxicity different molecular pathways are activated, ranging from oxidative stress to endoplasmic reticulum (ER) stress response and inflammation, but the contribution of each pathway in the development of the disease still requires further investigation. Thus, to increase our understanding of the pathophysiology of bilirubin neurotoxicity, encephalopathy and kernicterus, we pharmacologically modulated neurodegeneration and neuroinflammation in a lethal mouse model of neonatal hyperbilirubinemia. Treatment of mutant mice with minocycline, a second-generation tetracycline with anti-inflammatory and neuroprotective properties, resulted in a dose-dependent rescue of lethality, due to reduction of neurodegeneration and neuroinflammation, without affecting plasma bilirubin levels. In particular, rescued mice showed normal motor-coordination capabilities and behavior, as determined by the accelerating rotarod and open field tests, respectively. From the molecular point of view, rescued mice showed a dose-dependent reduction in apoptosis of cerebellar neurons and improvement of dendritic arborization of Purkinje cells. Moreover, we observed a decrease of bilirubin-induced M1 microglia activation at the sites of damage with a reduction in oxidative and ER stress markers in these cells. Collectively, these data indicate that neurodegeneration and neuro-inflammation are key factors of bilirubin-induced neonatal lethality and neuro-behavioral abnormalities. We propose that the application of pharmacological treatments having anti-inflammatory and neuroprotective effects, to be used in combination with the current treatments, may significantly improve the management of acute neonatal hyperbilirubinemia, protecting from bilirubin-induced neurological damage and death.


Assuntos
Hiperbilirrubinemia Neonatal/fisiopatologia , Hiperbilirrubinemia Neonatal/terapia , Animais , Animais Recém-Nascidos , Bilirrubina , Encefalopatias/fisiopatologia , Modelos Animais de Doenças , Inflamação , Kernicterus/fisiopatologia , Camundongos , Minociclina/farmacologia , Neuroimunomodulação/fisiologia , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Fototerapia/métodos
7.
J Neuroinflammation ; 14(1): 64, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28340583

RESUMO

BACKGROUND: Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced neurological damage and eventually death by kernicterus. Bilirubin neurotoxicity is characterized by a wide array of neurological deficits, including irreversible abnormalities in motor, sensitive and cognitive functions, due to bilirubin accumulation in the brain. Despite the abundant literature documenting the in vitro and in vivo toxic effects of bilirubin, it is unclear which molecular and cellular events actually characterize bilirubin-induced neurodegeneration in vivo. METHODS: We used a mouse model of neonatal hyperbilirubinemia to temporally and spatially define the response of the developing cerebellum to the bilirubin insult. RESULTS: We showed that the exposure of developing cerebellum to sustained bilirubin levels induces the activation of oxidative stress, ER stress and inflammatory markers at the early stages of the disease onset. In particular, we identified TNFα and NFKß as key mediators of bilirubin-induced inflammatory response. Moreover, we reported that M1 type microglia is increasingly activated during disease progression. Failure to counteract this overwhelming stress condition resulted in the induction of the apoptotic pathway and the generation of the glial scar. Finally, bilirubin induced the autophagy pathway in the stages preceding death of the animals. CONCLUSIONS: This study demonstrates that inflammation is a key contributor to bilirubin damage that cooperates with ER stress in the onset of neurotoxicity. Pharmacological modulation of the inflammatory pathway may be a potential intervention target to ameliorate neonatal lethality in Ugt1 -/- mice.


Assuntos
Cerebelo/patologia , Hiperbilirrubinemia Neonatal/complicações , Inflamação/patologia , Degeneração Neural/patologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Glucuronosiltransferase/deficiência , Hiperbilirrubinemia Neonatal/patologia , Inflamação/etiologia , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Degeneração Neural/etiologia , Degeneração Neural/metabolismo
8.
Stem Cells ; 34(8): 2263-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27090359

RESUMO

Fibronectin (FN) is a major extracellular matrix protein implicated in cell adhesion and differentiation in the bone marrow (BM) environment. Alternative splicing of FN gene results in the generation of protein variants containing an additional EIIIA domain that sustains cell proliferation or differentiation during physiological or pathological tissue remodeling. To date its expression and role in adult hematopoiesis has not been explored. In our research, we demonstrate that during physiological hematopoiesis a small fraction of BM derived FN contains the EIIIA domain and that mice constitutively including (EIIIA(+/+) ) or excluding (EIIIA(-/-) ) the EIIIA exon present comparable levels of hematopoietic stem cells, myeloid and lymphoid progenitors within BM. Moreover, only minor alterations were detected in blood parameters and in hematopoietic frequencies of BM granulocytes/monocytes and B cells. As opposed to other tissues, unique compensatory mechanisms, such as increased FN accumulation and variable expression of the EIIIA receptors, Toll like receptor-4 and alpha9 integrin subunit, characterized the BM of these mice. Our data demonstrate that FN is a fundamental component of the hematopoietic tissue and that the EIIIA exon may play a key role in modulating hematopiesis in conditions of BM stress or diseases. Stem Cells 2016;34:2263-2268.


Assuntos
Processamento Alternativo/genética , Fibronectinas/química , Fibronectinas/genética , Hematopoese , Homeostase , Especificidade de Órgãos , Animais , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos
9.
RNA Biol ; 11(10): 1280-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25602706

RESUMO

TDP-43 is an RNA-binding protein involved in several steps of mRNA metabolism including transcription, splicing and stability. It is also involved in ALS and FTD, neurodegenerative diseases characterized by TDP-43 nuclear depletion. We previously identified TDP-43 as a binder of the downstream element (DSE) of the ß-Adducin (Add2) brain-specific polyadenylation site (A4 PAS), suggesting its involvement in pre-mRNA 3' end processing. Here, by using chimeric minigenes, we showed that TDP-43 depletion in HeLa and HEK293 cells resulted in down-regulation of both the chimeric and endogenous Add2 transcripts. Despite having confirmed TDP-43-DSE in vitro interaction, we demonstrated that the in vivo effect was not mediated by the TDP-43-DSE interaction. In fact, substitution of the Add2 DSE with viral E-SV40 and L-SV40 DSEs, which are not TDP-43 targets, still resulted in decreased Add2 mRNA levels after TDP-43 downregulation. In addition, we failed to show interaction between TDP-43 and key polyadenylation factors, such as CstF-64 and CPSF160 and excluded TDP-43 involvement in pre-mRNA cleavage and regulation of polyA tail length. These evidences allowed us to exclude the pre-hypothesized role of TDP43 in modulating 3' end processing of Add2 pre-mRNA. Finally, we showed that TDP-43 regulates Add2 gene expression levels by increasing Add2 mRNA stability. Considering that Add2 in brain participates in synapse assembly, synaptic plasticity and their stability, and its genetic inactivation in mice leads to LTP, LTD, learning and motor-coordination deficits, we hypothesize that a possible loss of Add2 function by TDP-43 depletion may contribute to ALS and FTD disease states.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Precursores de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Northern Blotting , Western Blotting , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Células HEK293 , Células HeLa , Humanos , Camundongos , Poliadenilação , Precursores de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Poliadenilação e Clivagem de mRNA/genética
11.
FASEB J ; 26(3): 1052-63, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22094718

RESUMO

Crigler-Najjar type I (CNI) syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1) deficiency. The disease is lethal due to bilirubin-induced neurological damage unless phototherapy is applied from birth. However, treatment becomes less effective during growth, and liver transplantation is required. To investigate the pathophysiology of the disease and therapeutic approaches in mice, we generated a mouse model by introducing a premature stop codon in the UGT1a1 gene, which results in an inactive enzyme. Homozygous mutant mice developed severe jaundice soon after birth and died within 11 d, showing significant cerebellar alterations. To rescue neonatal lethality, newborns were injected with a single dose of adeno-associated viral vector 9 (AAV9) expressing the human UGT1A1. Gene therapy treatment completely rescued all AAV-treated mutant mice, accompanied by lower plasma bilirubin levels and normal brain histology and motor coordination. Our mouse model of CNI reproduces genetic and phenotypic features of the human disease. We have shown, for the first time, the full recovery of the lethal effects of neonatal hyperbilirubinemia. We believe that, besides gene-addition-based therapies, our mice could represent a very useful model to develop and test novel technologies based on gene correction by homologous recombination.


Assuntos
Síndrome de Crigler-Najjar/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Glucuronosiltransferase/genética , Animais , Animais Recém-Nascidos , Bilirrubina/sangue , Northern Blotting , Western Blotting , Cerebelo/enzimologia , Cerebelo/metabolismo , Cerebelo/patologia , Síndrome de Crigler-Najjar/enzimologia , Síndrome de Crigler-Najjar/mortalidade , Dependovirus/classificação , Dependovirus/genética , Regulação Enzimológica da Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Glucuronosiltransferase/deficiência , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida
12.
RNA Biol ; 10(4): 516-27, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23411391

RESUMO

Accurate 3'end processing depends on the correct recognition of polyadenylation regulatory elements by specific protein complexes. In addition to the well-known hexanucleotide motif and downstream sequence element (DSE), less-defined auxiliary elements are usually found to modulate cleavage and polyadenylation. They are generally located in close proximity to the core polyadenylation elements but, in most of the cases, the molecular mechanisms involved are not well defined. We concentrated our studies on the regulation of the mouse ß adducin (Add2) pre-mRNA cleavage and polyadenylation. It contains two proximal erythroid-specific (PAS1 and PAS2-3) and one distal brain-specific (PAS4) polyadenylation sites along the 3'UTR. Using an in vivo approach based in the transfection of minigenes containing the Add2 polyadenylation signals, we previously identified the core regulatory elements responsible for PAS4 activity. Here, we have identified two novel non-canonical cis-acting elements regulating 3'end processing at PAS4, which show long-distance activities. The first of these elements, which spans for 257 nucleotides and is located at more than 5 kb upstream the PAS4, was essential to enable processing at the Add2 PAS4. The second element, located at about 4.5 kb upstream of the PAS4, reduces PAS4 processing. Both elements display long-distance activities and, to our knowledge, long-distance upstream polyadenylation regulatory elements have not been previously described in non-viral eukaryotic transcripts. These results highlight the complexity of the regulatory mechanisms directing Add2 pre-mRNA 3'end processing, and suggests that pre-mRNA 3' end processing of other genes may also be unexpectedly regulated by non-canonical auxiliary elements.


Assuntos
Regulação da Expressão Gênica , Proteínas dos Microfilamentos/genética , Processamento de Terminações 3' de RNA , Clivagem do RNA , Precursores de RNA/genética , Animais , Proteínas do Citoesqueleto , Elementos Facilitadores Genéticos , Células HeLa , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Poliadenilação , Biossíntese de Proteínas , Precursores de RNA/metabolismo , Elementos Silenciadores Transcricionais , Transfecção
13.
J Pathol ; 226(4): 609-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21960174

RESUMO

Advances in donor matching and immunosuppressive therapies have decreased the prevalence of acute rejection of cardiac grafts; however, chronic rejection remains a significant obstacle for long-term allograft survival. While initiating elements of anti-allograft immune responses have been identified, the linkage between these factors and the ultimate development of cardiac fibrosis is not well understood. Tissue fibrosis resembles an exaggerated wound healing response, in which extracellular matrix (ECM) molecules are central. One such ECM molecule is an alternatively spliced isoform of the ubiquitous glycoprotein fibronectin (FN), termed extra domain A-containing cellular fibronectin (EDA cFN). EDA cFN is instrumental in fibrogenesis; thus, we hypothesized that it might also regulate fibrotic remodelling associated with chronic rejection. We compared the development of acute and chronic cardiac allograft rejection in EDA cFN-deficient (EDA(-/-)) and wild-type (WT) mice. While EDA(-/-) mice developed acute cardiac rejection in a manner indistinguishable from WT controls, cardiac allografts in EDA(-/-) mice were protected from fibrosis associated with chronic rejection. Decreased fibrosis was not associated with differences in cardiomyocyte hypertrophy or intra-graft expression of pro-fibrotic mediators. Further, we examined expression of EDA cFN and total FN by whole splenocytes under conditions promoting various T-helper lineages. Conditions supporting regulatory T-cell (Treg) development were characterized by greatest production of total FN and EDA cFN, though EDA cFN to total FN ratios were highest in Th1 cultures. These findings indicate that recipient-derived EDA cFN is dispensable for acute allograft rejection responses but that it promotes the development of fibrosis associated with chronic rejection. Further, conditions favouring the development of regulatory T cells, widely considered graft-protective, may drive production of ECM molecules which enhance deleterious remodelling responses. Thus, EDA cFN may be a therapeutic target for ameliorating fibrosis associated with chronic cardiac allograft rejection.


Assuntos
Fibronectinas/metabolismo , Fibrose/patologia , Rejeição de Enxerto/patologia , Transplante de Coração/patologia , Miocárdio/patologia , Doença Aguda , Animais , Proliferação de Células , Células Cultivadas , Doença Crônica , Vasos Coronários/patologia , Modelos Animais de Doenças , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibronectinas/genética , Fibrose/genética , Fibrose/metabolismo , Expressão Gênica , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/citologia , Transplante Homólogo , Remodelação Ventricular/fisiologia
14.
Mol Ther Methods Clin Dev ; 31: 101103, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37744006

RESUMO

Citrullinemia type I is a rare autosomal-recessive disorder caused by deficiency of argininosuccinate synthetase (ASS1). The clinical presentation includes the acute neonatal form, characterized by ammonia and citrulline accumulation in blood, which may lead to encephalopathy, coma, and death, and the milder late-onset form. Current treatments are unsatisfactory, and the only curative treatment is liver transplantation. We permanently modified the hepatocyte genome in lethal citrullinemia mice (Ass1fold/fold) by inserting the ASS1 cDNA into the albumin locus through the delivery of two AAV8 vectors carrying the donor DNA and the CRISPR-Cas9 platform. The neonatal treatment completely rescued mortality ensuring survival up to 5 months of age, with plasma citrulline levels significantly decreased, while plasma ammonia levels remained unchanged. In contrast, neonatal treatment with a liver-directed non-integrative AAV8-AAT-hASS1 vector failed to improve disease parameters. To model late-onset citrullinemia, we dosed postnatal day (P) 30 juvenile animals using the integrative approach, resulting in lifespan improvement and a minor reduction in disease markers. Conversely, treatment with the non-integrative vector completely rescued mortality, reducing plasma ammonia and citrulline to wild-type values. In summary, the integrative approach in neonates is effective, although further improvements are required to fully correct the phenotype. Non-integrative gene therapy application to juvenile mice ensures a stable and very efficient therapeutic effect.

15.
J Allergy Clin Immunol ; 127(2): 439-446.e1-5, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21167578

RESUMO

BACKGROUND: Asthma is characterized by airway inflammation, airway remodeling, and airway hyperresponsiveness (AHR). Myofibroblast differentiation and subepithelial fibrosis are key features of airway remodeling. Extra domain A (EDA)-containing fibronectin (EDA-FN), an alternatively spliced form of the extracellular matrix protein fibronectin, has been implicated in fibroblast differentiation during wound healing and tissue fibrosis. OBJECTIVES: We sought to investigate the role of EDA-FN in airway remodeling using a murine model of chronic allergen-induced experimental asthma. METHODS: EDA(-/-) and wild-type (WT) mice were sensitized and exposed to inhaled ovalbumin (OVA) or saline for 5 weeks. EDA-FN expression was evaluated by means of PCR and immunostaining. Peribronchial fibrosis, smooth muscle area, mucus-producing cell numbers, bronchoalveolar cell counts, and lung function were assessed in WT and EDA(-/-) mice. Fibroblast activation and differentiation were evaluated ex vivo by using OVA-treated WT and EDA(-/-) lung fibroblasts. RESULTS: Exposure to OVA increased EDA-FN expression in lung tissue and primary lung fibroblasts. OVA-treated EDA(-/-) mice showed reduced airway fibrosis and AHR and impaired expression of TGF-ß1 and IL-13 without changes in airway inflammation or other aspects of remodeling. Lung fibroblasts from OVA-treated EDA(-/-) mice exhibited reduced proliferation, migration, α-smooth muscle actin expression, and collagen deposition and impaired TGF-ß1 and IL-13 release compared with that seen in WT mice. CONCLUSIONS: EDA-FN is essential for the development of OVA-induced airway fibrosis and AHR. The effect of the EDA domain on airway fibrosis after OVA challenge is through activation and differentiation of fibroblasts. Fibroblast activation and airway fibrosis are necessary for the development of AHR.


Assuntos
Alérgenos/imunologia , Asma/etiologia , Brônquios/patologia , Hiper-Reatividade Brônquica/etiologia , Fibronectinas/fisiologia , Animais , Fibroblastos/citologia , Fibroblastos/fisiologia , Fibronectinas/química , Fibrose , Interleucina-13/análise , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Terciária de Proteína , Fator de Crescimento Transformador beta1/análise
16.
Front Genome Ed ; 4: 785698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359664

RESUMO

Many inborn errors of metabolism require life-long treatments and, in severe conditions involving the liver, organ transplantation remains the only curative treatment. Non-integrative AAV-mediated gene therapy has shown efficacy in adult patients. However, treatment in pediatric or juvenile settings, or in conditions associated with hepatocyte proliferation, may result in rapid loss of episomal viral DNA and thus therapeutic efficacy. Re-administration of the therapeutic vector later in time may not be possible due to the presence of anti-AAV neutralizing antibodies. We have previously shown the permanent rescue of the neonatal lethality of a Crigler-Najjar mouse model by applying an integrative gene-therapy based approach. Here, we targeted the human coagulation factor IX (hFIX) cDNA into a hemophilia B mouse model. Two AAV8 vectors were used: a promoterless vector with two arms of homology for the albumin locus, and a vector carrying the CRISPR/SaCas9 and the sgRNA. Treatment of neonatal P2 wild-type mice resulted in supraphysiological levels of hFIX being stable 10 months after dosing. A single injection of the AAV vectors into neonatal FIX KO mice also resulted in the stable expression of above-normal levels of hFIX, reaching up to 150% of the human levels. Mice subjected to tail clip analysis showed a clotting capacity comparable to wild-type animals, thus demonstrating the rescue of the disease phenotype. Immunohistological analysis revealed clusters of hFIX-positive hepatocytes. When we tested the approach in adult FIX KO mice, we detected hFIX in plasma by ELISA and in the liver by western blot. However, the hFIX levels were not sufficient to significantly ameliorate the bleeding phenotype upon tail clip assay. Experiments conducted using a AAV donor vectors containing the eGFP or the hFIX cDNAs showed a higher recombination rate in P2 mice compared to adult animals. With this study, we demonstrate an alternative gene targeting strategy exploiting the use of the CRISPR/SaCas9 platform that can be potentially applied in the treatment of pediatric patients suffering from hemophilia, also supporting its application to other liver monogenic diseases. For the treatment of adult patients, further studies for the improvement of targeting efficiency are still required.

17.
Nat Biotechnol ; 40(8): 1285-1294, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393561

RESUMO

Homologous recombination (HR)-based gene therapy using adeno-associated viruses (AAV-HR) without nucleases has several advantages over classic gene therapy, especially the potential for permanent transgene expression. However, the low efficiency of AAV-HR remains a major limitation. Here, we tested a series of small-molecule compounds and found that ribonucleotide reductase (RNR) inhibitors substantially enhance AAV-HR efficiency in mouse and human liver cell lines approximately threefold. Short-term administration of the RNR inhibitor fludarabine increased the in vivo efficiency of both non-nuclease- and CRISPR/Cas9-mediated AAV-HR two- to sevenfold in the murine liver, without causing overt toxicity. Fludarabine administration induced transient DNA damage signaling in both proliferating and quiescent hepatocytes. Notably, the majority of AAV-HR events occurred in non-proliferating hepatocytes in both fludarabine-treated and control mice, suggesting that the induction of transient DNA repair signaling in non-dividing hepatocytes was responsible for enhancing AAV-HR efficiency in mice. These results suggest that use of a clinically approved RNR inhibitor can potentiate AAV-HR-based genome-editing therapeutics.


Assuntos
Sistemas CRISPR-Cas , Vetores Genéticos , Animais , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Endonucleases/genética , Edição de Genes/métodos , Recombinação Homóloga , Humanos , Camundongos , Vidarabina/análogos & derivados
18.
IUBMB Life ; 63(7): 538-46, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21698758

RESUMO

The extracellular matrix (ECM) is a highly dynamic network of proteins, glycoproteins, and proteoglycans. Numerous diseases result from mutation in genes coding for ECM proteins, but only recently it has been reported that mutations in the fibronectin (FN) gene were associated with a human disorder. FN is one of the main components of the ECM. It generates protein diversity through alternative splicing of a single pre-mRNA, having at least 20 different isoforms in humans. The precise function of these protein isoforms has remained obscure in most cases. Only in the recent few years, it was possible to shed light on the multiple roles of the alternatively spliced FN isoforms. This substantial progress was achieved basically with the knowledge derived from engineered mouse models bearing subtle mutations in specific FN domains. These data, together with a recent report associating mutations in the FN gene to a form of glomerulopathy, clearly show that mutations in constitutive exons or misregulation of alternatively spliced domains of the FN gene may have nonlethal pathological consequences. In this review, we focus on the pathological consequences of mutations in the FN gene, by connecting the function of alternatively spliced isoforms of fibronectin to human diseases.


Assuntos
Processamento Alternativo , Doença , Fibronectinas/genética , Fibronectinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Animais , Matriz Extracelular/metabolismo , Fibronectinas/química , Fibrose/patologia , Humanos , Camundongos , Conformação Proteica , Transdução de Sinais
19.
FASEB J ; 24(11): 4503-12, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20643910

RESUMO

Fibroblast differentiation is an essential step during wound healing and fibrosis. Fibronectin (FN) is a major component of the extracellular matrix and occurs in two main forms: plasma and cellular FN. The latter includes the alternatively spliced domain A (EDA). Although EDA-containing cellular fibronectin (EDA-FN) is associated with fibroblast differentiation, how EDA-FN promotes differentiation is incompletely understood. In this study, we investigate the mechanism by which EDA-FN contributes to fibroblast differentiation with emphasis on the characterization of the EDA-FN receptor. We show that EDA-FN increases α-SMA expression (immunofluorescence), collagen deposition, cell contractility, and focal adhesion kinase (FAK) activation (immunoblotting); whereas plasma FN, a form lacking EDA, shows no effect. Primary lung fibroblasts constitutively express α(4)ß(7) integrin receptor (FACS and RT-PCR). Blocking of α(4)ß(7) reduces fibroblast adhesion to EDA-FN and inhibits α-SMA expression, collagen deposition, and FAK activation induced by EDA-FN. Using recombinant EDA-containing peptides, we demonstrate that the EDA segment is sufficient to induce fibroblast differentiation via binding to α(4)ß(7). EDA-FN induces MAPK-Erk1/2 activation and inhibition of MEK1/2 attenuates EDA-FN-induced α-SMA expression. Our findings demonstrate that EDA-FN induces fibroblast differentiation by a mechanism that involves binding of EDA to α(4)ß(7) integrin followed by activation of FAK and MAPK-associated signaling pathways.


Assuntos
Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibronectinas/farmacologia , Integrinas/metabolismo , Transdução de Sinais , Actinas/metabolismo , Animais , Adesão Celular , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Fibroblastos/citologia , Fibronectinas/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
20.
Exp Cell Res ; 316(16): 2644-53, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20615404

RESUMO

Fibronectin (FN), a ubiquitous glycoprotein that plays critical roles in physiologic and pathologic conditions, undergoes alternative splicing which distinguishes plasma FN (pFN) from cellular FN (cFN). Although both pFN and cFN can be incorporated into the extracellular matrix, a distinguishing feature of cFN is the inclusion of an alternatively spliced exon termed EDA (for extra type III domain A). The molecular steps involved in EDA splicing are well-characterized, but pathways influencing EDA splicing are less clear. We have previously found an obligate role for inhibition of the tumor suppressor phosphatase and tensin homologue on chromosome 10 (PTEN), the primary regulator of the PI3K/Akt pathway, in fibroblast activation. Here we show TGF-beta, a potent inducer of both EDA splicing and fibroblast activation, inhibits PTEN expression and activity in mesenchymal cells, corresponding with enhanced PI3K/Akt signaling. In pten(-/-) fibroblasts, which resemble activated fibroblasts, inhibition of Akt attenuated FN production and decreased EDA alternative splicing. Moreover, inhibition of mammalian target of rapamycin (mTOR) in pten(-/-) cells also blocked FN production and EDA splicing. This effect was due to inhibition of Akt-mediated phosphorylation of the primary EDA splicing regulatory protein SF2/ASF. Importantly, FN silencing in pten(-/-) cells resulted in attenuated proliferation and migration. Thus, our results demonstrate that the PI3K/Akt/mTOR axis is instrumental in FN transcription and alternative splicing, which regulates cell behavior.


Assuntos
Processamento Alternativo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Western Blotting , Movimento Celular , Proliferação de Células , Fibroblastos/citologia , Fibronectinas/antagonistas & inibidores , Fibronectinas/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fosforilação , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA