Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(8): 10836-10846, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403606

RESUMO

A complementary metal oxide semiconductor (CMOS) compatible fabrication method for creating three-dimensional (3D) meta-films is presented. In contrast to metasurfaces, meta-films possess structural variation throughout the thickness of the film and can possess a sub-wavelength scale structure in all three dimensions. Here we use this approach to create 2D arrays of cubic silicon nitride unit cells with plasmonic inclusions of elliptical metallic disks in horizontal and vertical orientations with lateral array-dimensions on the order of millimeters. Fourier transform infrared (FTIR) spectroscopy is used to measure the infrared transmission of meta-films with either horizontally or vertically oriented ellipses with varying eccentricity. Shape effects due to the ellipse eccentricity, as well as localized surface plasmon resonance (LSPR) effects due to the effective plasmonic wavelength are observed in the scattering response. The structures were modeled using rigorous coupled wave analysis (RCWA), finite difference time domain (Lumerical), and frequency domain finite element (COMSOL). The silicon nitride support structure possesses a complex in-plane photonic crystal slab band structure due to the periodicity of the unit cells. We show that adjustments to the physical dimensions of the ellipses can be used to control the coupling to this band structure. The horizontally oriented ellipses show narrow, distinct plasmonic resonances while the vertically oriented ellipses possess broader resonances, with lower overall transmission amplitude for a given ellipse geometry. We attribute this difference in resonance behavior to retardation effects. The ability to couple photonic slab modes with plasmonic inclusions enables a richer space of optical functionality for design of metamaterial-inspired optical components.

2.
Biomed Eng Online ; 9: 67, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21050471

RESUMO

BACKGROUND: A serious complication with drug-eluting coronary stents is late thrombosis, caused by exposed stent struts not covered by endothelial cells in the healing process. Real-time detection of this healing process could guide physicians for more individualized anti-platelet therapy. Here we present work towards developing a sensor to detect this healing process. Sensors on several stent struts could give information about the heterogeneity of healing across the stent. METHODS: A piezoelectric microcantilever was insulated with parylene and demonstrated as an endothelialization detector for incorporation within an active coronary stent. After initial characterization, endothelial cells were plated onto the cantilever surface. After they attached to the surface, they caused an increase in mass, and thus a decrease in the resonant frequencies of the cantilever. This shift was then detected electrically with an LCR meter. The self-sensing, self-actuating cantilever does not require an external, optical detection system, thus allowing for implanted applications. RESULTS: A cell density of 1300 cells/mm2 on the cantilever surface is detected. CONCLUSIONS: We have developed a self-actuating, self-sensing device for detecting the presence of endothelial cells on a surface. The device is biocompatible and functions reliably in ionic liquids, making it appropriate for implantable applications. This sensor can be placed along the struts of a coronary stent to detect when the struts have been covered with a layer of endothelial cells and are no longer available surfaces for clot formation. Anti-platelet therapy can be adjusted in real-time with respect to a patient's level of healing and hemorrhaging risks.


Assuntos
Vasos Coronários/citologia , Stents Farmacológicos , Eletrônica/instrumentação , Células Endoteliais/metabolismo , Stents Farmacológicos/efeitos adversos , Humanos , Trombose
3.
Sci Rep ; 5: 14363, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26400791

RESUMO

Reliably interfacing a nerve with an electrode array is one of the approaches to restore motor and sensory functions after an injury to the peripheral nerve. Accomplishing this with current technologies is challenging as the electrode-neuron interface often degrades over time, and surrounding myoelectric signals contaminate the neuro-signals in awake, moving animals. The purpose of this study was to evaluate the potential of microchannel electrode implants to monitor over time and in freely moving animals, neural activity from regenerating nerves. We designed and fabricated implants with silicone rubber and elastic thin-film metallization. Each implant carries an eight-by-twelve matrix of parallel microchannels (of 120 × 110 µm(2) cross-section and 4 mm length) and gold thin-film electrodes embedded in the floor of ten of the microchannels. After sterilization, the soft, multi-lumen electrode implant is sutured between the stumps of the sciatic nerve. Over a period of three months and in four rats, the microchannel electrodes recorded spike activity from the regenerating sciatic nerve. Histology indicates mini-nerves formed of axons and supporting cells regenerate robustly in the implants. Analysis of the recorded spikes and gait kinematics over the ten-week period suggests firing patterns collected with the microchannel electrode implant can be associated with different phases of gait.


Assuntos
Eletrodos Implantados , Fenômenos Eletrofisiológicos , Marcha/fisiologia , Microeletrodos , Neurônios/fisiologia , Animais , Masculino , Nervos Periféricos/fisiologia , Ratos , Nervo Isquiático/fisiologia
4.
Sci Transl Med ; 5(210): 210ra155, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24197736

RESUMO

A severe complication of spinal cord injury is loss of bladder function (neurogenic bladder), which is characterized by loss of bladder sensation and voluntary control of micturition (urination), and spontaneous hyperreflexive voiding against a closed sphincter (detrusor-sphincter dyssynergia). A sacral anterior root stimulator at low frequency can drive volitional bladder voiding, but surgical rhizotomy of the lumbosacral dorsal roots is needed to prevent spontaneous voiding and dyssynergia. However, rhizotomy is irreversible and eliminates sexual function, and the stimulator gives no information on bladder fullness. We designed a closed-loop neuroprosthetic interface that measures bladder fullness and prevents spontaneous voiding episodes without the need for dorsal rhizotomy in a rat model. To obtain bladder sensory information, we implanted teased dorsal roots (rootlets) within the rat vertebral column into microchannel electrodes, which provided signal amplification and noise suppression. As long as they were attached to the spinal cord, these rootlets survived for up to 3 months and contained axons and blood vessels. Electrophysiological recordings showed that half of the rootlets propagated action potentials, with firing frequency correlated to bladder fullness. When the bladder became full enough to initiate spontaneous voiding, high-frequency/amplitude sensory activity was detected. Voiding was abolished using a high-frequency depolarizing block to the ventral roots. A ventral root stimulator initiated bladder emptying at low frequency and prevented unwanted contraction at high frequency. These data suggest that sensory information from the dorsal root together with a ventral root stimulator could form the basis for a closed-loop bladder neuroprosthetic.


Assuntos
Próteses Neurais , Desenho de Prótese , Traumatismos da Medula Espinal/fisiopatologia , Bexiga Urinária/fisiopatologia , Potenciais de Ação , Animais , Axônios/patologia , Estimulação Elétrica , Feminino , Implantes Experimentais , Microeletrodos , Bainha de Mielina/metabolismo , Bloqueio Nervoso , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/irrigação sanguínea , Raízes Nervosas Espinhais/fisiopatologia , Raízes Nervosas Espinhais/cirurgia , Micção
5.
Artigo em Inglês | MEDLINE | ID: mdl-21096685

RESUMO

We present proof-of-concept studies that display the potential for using a glucose-sensitive hydrogel as a continuous glucose sensor. A study to characterize the swelling ratio of the hydrogel at normal physiological and pathological hyperglycemic glucose levels was performed. The hydrogel exposed to the hyperglycemic glucose solution had a higher equilibrium swelling ratio than the hydrogel exposed to the normal glucose concentration solution. The diffusivity of a small molecule, fluorescein isothiocyanate (FITC), through a hydrogel exposed to a hyperglycemic solution was determined using fluorescence recovery after photobleaching (FRAP). The diffusivity was found to be 4.2 × 10(-14) m(2)/s, a value approximately four orders of magnitude smaller than the diffusivity of FITC in glucose solution. The permeability of the hydrogel after equilibration in a hyperglycemic solution was found to be 5.1 × 10(-17) m(2), in the range of 2-4% agarose gels.


Assuntos
Técnicas de Química Analítica/métodos , Glucose/análise , Hidrogéis/química , Transporte Biológico , Fluorescência , Recuperação de Fluorescência Após Fotodegradação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA