Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
2.
Nature ; 510(7503): 139-42, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24805231

RESUMO

Dietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies, causing a loss of 63 million life-years annually. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron. Here we report that C3 grains and legumes have lower concentrations of zinc and iron when grown under field conditions at the elevated atmospheric CO2 concentration predicted for the middle of this century. C3 crops other than legumes also have lower concentrations of protein, whereas C4 crops seem to be less affected. Differences between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospheric CO2 concentration could partly address these new challenges to global health.


Assuntos
Dióxido de Carbono/farmacologia , Produtos Agrícolas/química , Produtos Agrícolas/efeitos dos fármacos , Estado Nutricional , Valor Nutritivo/efeitos dos fármacos , Saúde Pública/tendências , Ar/análise , Atmosfera/química , Austrália , Cruzamento , Dióxido de Carbono/análise , Produtos Agrícolas/metabolismo , Dieta , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Fabaceae/química , Fabaceae/efeitos dos fármacos , Fabaceae/metabolismo , Saúde Global/tendências , Humanos , Ferro/análise , Ferro/metabolismo , Deficiências de Ferro , Japão , Fotossíntese/efeitos dos fármacos , Ácido Fítico/análise , Ácido Fítico/metabolismo , Estados Unidos , Zinco/análise , Zinco/deficiência , Zinco/metabolismo
3.
Public Health Nutr ; 22(12): 2200-2209, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112110

RESUMO

OBJECTIVE: We collected dietary records over the course of nine months to comprehensively characterize the consumption patterns of Malagasy people living in remote rainforest areas of north-eastern Madagascar. DESIGN: The present study was a prospective longitudinal cohort study to estimate dietary diversity and nutrient intake for a suite of macronutrients, micronutrients and vitamins for 152 randomly selected households in two communities. SETTING: Madagascar, with over 25 million people living in an area the size of France, faces a multitude of nutritional challenges. Micronutrient-poor staples, especially rice, roots and tubers, comprise nearly 80 % of the Malagasy diet by weight. The remaining dietary components (including wild foods and animal-source foods) are critical for nutrition. We focus our study in north-eastern Madagascar, characterized by access to rainforest, rice paddies and local agriculture. PARTICIPANTS: We enrolled men, women and children of both sexes and all ages in a randomized sample of households in two communities. RESULTS: Although the Household Dietary Diversity Score and Food Consumption Score reflect high dietary diversity, the Minimum Dietary Diversity-Women indicator suggests poor micronutrient adequacy. The food intake data confirm a mixed nutritional picture. We found that the median individual consumed less than 50 % of his/her age/sex-specific Estimated Average Requirement (EAR) for vitamins A, B12, D and E, and Ca, and less than 100 % of his/her EAR for energy, riboflavin, folate and Na. CONCLUSIONS: Malnutrition in remote communities of north-eastern Madagascar is pervasive and multidimensional, indicating an urgent need for comprehensive public health and development interventions focused on providing nutritional security.


Assuntos
Dieta/estatística & dados numéricos , Abastecimento de Alimentos/estatística & dados numéricos , Micronutrientes/análise , Floresta Úmida , Estações do Ano , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Características da Família , Comportamento Alimentar , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Madagáscar , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
4.
Lancet ; 390(10114): 2860-2868, 2017 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-29146123

RESUMO

The impact of human activities on our planet's natural systems has been intensifying rapidly in the past several decades, leading to disruption and transformation of most natural systems. These disruptions in the atmosphere, oceans, and across the terrestrial land surface are not only driving species to extinction, they pose serious threats to human health and wellbeing. Characterising and addressing these threats requires a paradigm shift. In a lecture delivered to the Academy of Medical Sciences on Nov 13, 2017, I describe the scale of human impacts on natural systems and the extensive associated health effects across nearly every dimension of human health. I highlight several overarching themes that emerge from planetary health and suggest advances in the way we train, reward, promote, and fund the generation of health scientists who will be tasked with breaking out of their disciplinary silos to address this urgent constellation of health threats. I propose that protecting the health of future generations requires taking better care of Earth's natural systems.


Assuntos
Planeta Terra , Meio Ambiente , Saúde , Humanos
7.
Annu Rev Public Health ; 38: 259-277, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28125383

RESUMO

Great progress has been made in addressing global undernutrition over the past several decades, in part because of large increases in food production from agricultural expansion and intensification. Food systems, however, face continued increases in demand and growing environmental pressures. Most prominently, human-caused climate change will influence the quality and quantity of food we produce and our ability to distribute it equitably. Our capacity to ensure food security and nutritional adequacy in the face of rapidly changing biophysical conditions will be a major determinant of the next century's global burden of disease. In this article, we review the main pathways by which climate change may affect our food production systems-agriculture, fisheries, and livestock-as well as the socioeconomic forces that may influence equitable distribution.


Assuntos
Mudança Climática , Abastecimento de Alimentos , Agricultura , Alimentos , Humanos , Desnutrição
10.
Lancet ; 386(10007): 1964-1972, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26188748

RESUMO

BACKGROUND: Anthropogenic declines of animal pollinators and the associated effects on human nutrition are of growing concern. We quantified the nutritional and health outcomes associated with decreased intake of pollinator-dependent foods for populations around the world. METHODS: We assembled a database of supplies of 224 types of food in 156 countries. We quantified nutrient composition and pollinator dependence of foods to estimate the size of possible reductions in micronutrient and food intakes for different national populations, while keeping calorie intake constant with replacement by staple foods. We estimated pollinator-decline-dependent changes in micronutrient-deficient populations using population-weighted estimated average requirements and the cutpoint method. We estimated disease burdens of non-communicable, communicable, and malnutrition-related diseases with the Global Burden of Disease 2010 comparative risk assessment framework. FINDINGS: Assuming complete removal of pollinators, 71 million (95% uncertainty interval 41-262) people in low-income countries could become newly deficient in vitamin A, and an additional 2.2 billion (1.2-2.5) already consuming below the average requirement would have further declines in vitamin A supplies. Corresponding estimates for folate were 173 million (134-225) and 1.23 billion (1.12-1.33). A 100% decline in pollinator services could reduce global fruit supplies by 22.9% (19.5-26.1), vegetables by 16.3% (15.1-17.7), and nuts and seeds by 22.1% (17.7-26.4), with significant heterogeneity by country. In sum, these dietary changes could increase global deaths yearly from non-communicable and malnutrition-related diseases by 1.42 million (1.38-1.48) and disability-adjusted life-years (DALYs) by 27.0 million (25.8-29.1), an increase of 2.7% for deaths and 1.1% for DALYs. A 50% loss of pollination services would be associated with 700,000 additional annual deaths and 13.2 million DALYs. INTERPRETATION: Declines in animal pollinators could cause significant global health burdens from both non-communicable diseases and micronutrient deficiencies. FUNDING: Winslow Foundation, Bill & Melinda Gates Foundation.


Assuntos
Abastecimento de Alimentos , Saúde Global , Insetos , Desnutrição/epidemiologia , Polinização , Animais , Humanos , Modelos Teóricos
11.
Nature ; 468(7324): 647-52, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21124449

RESUMO

Current unprecedented declines in biodiversity reduce the ability of ecological communities to provide many fundamental ecosystem services. Here we evaluate evidence that reduced biodiversity affects the transmission of infectious diseases of humans, other animals and plants. In principle, loss of biodiversity could either increase or decrease disease transmission. However, mounting evidence indicates that biodiversity loss frequently increases disease transmission. In contrast, areas of naturally high biodiversity may serve as a source pool for new pathogens. Overall, despite many remaining questions, current evidence indicates that preserving intact ecosystems and their endemic biodiversity should generally reduce the prevalence of infectious diseases.


Assuntos
Biodiversidade , Doenças Transmissíveis/transmissão , Animais , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/microbiologia , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/virologia , Orthohantavírus/fisiologia , Humanos , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Especificidade da Espécie , Zoonoses/epidemiologia , Zoonoses/transmissão
12.
Proc Natl Acad Sci U S A ; 110(47): 18753-60, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24218556

RESUMO

Human activity is rapidly transforming most of Earth's natural systems. How this transformation is impacting human health, whose health is at greatest risk, and the magnitude of the associated disease burden are relatively new subjects within the field of environmental health. We discuss what is known about the human health implications of changes in the structure and function of natural systems and propose that these changes are affecting human health in a variety of important ways. We identify several gaps and limitations in the research that has been done to date and propose a more systematic and comprehensive approach to applied research in this field. Such efforts could lead to a more robust understanding of the human health impacts of accelerating environmental change and inform decision making in the land-use planning, environmental conservation, and public health policy realms.


Assuntos
Ecossistema , Saúde Ambiental/tendências , Nível de Saúde , Atividades Humanas , Pesquisa , Saúde Ambiental/métodos , Humanos
14.
Am J Clin Nutr ; 119(1): 69-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898436

RESUMO

BACKGROUND: To assess the state and trends of global nutrition, our best tools are nationally representative assessments using human biomarker assays, yet these are expensive and logistically challenging. We instead often rely on more easily produced global nutrient datasets-measures of nutrients provided by the diet-as a proxy for nutritional intake and deficiency, due to their greater geographic and temporal coverage. However, the accuracy of global nutrient datasets is questionable. OBJECTIVE: We aimed to test whether estimates of inadequate dietary intake derived from existing global nutrient datasets reliably associate with biophysical deficiency. DESIGN: We performed linear regressions of estimates of inadequate dietary nutrient intake derived from three global nutrient datasets-Global Dietary Database, Global Nutrient Database, and Global Expanded Nutrient Supply (GENuS) model-against the existing suite of nationally representative biomarker survey data for three key nutrients of global concern in two vulnerable demographic groups: zinc, folate, and vitamin A in females of childbearing age; and zinc and vitamin A in children younger than 5 y. RESULTS: We found significant associations (P < 0.1) for only 3 of 22 regressions between global nutrition datasets and biophysical deficiency: zinc for females of childbearing age from GENuS and Global Dietary Database, and zinc for children under 5 y from GENuS. Folate and vitamin A show no reliable relationship between nutrient datasets and independent biomarker surveys. Applying the successful models for zinc to the accompanying full datasets yield estimates of global zinc deficiency of 31%-37% for these demographic groups. CONCLUSIONS: We found that few estimates of nutritional inadequacy from global dietary datasets are associated with more direct measures of biophysical deficiency from biomarker studies. Researchers and policymakers must be cautious when applying global nutrient datasets to questions of global health and use them for limited applications.


Assuntos
Dieta , Vitamina A , Criança , Feminino , Humanos , Ácido Fólico , Nutrientes , Zinco , Análise de Regressão , Biomarcadores
15.
Sci Rep ; 14(1): 13760, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877021

RESUMO

Elevated atmospheric carbon dioxide (eCO2) can affect plant growth and physiology, which can, in turn, impact herbivorous insects, including by altering pollen or plant tissue nutrition. Previous research suggests that eCO2 can reduce pollen nutrition in some species, but it is unknown whether this effect is consistent across flowering plant species. We experimentally quantified the effects of eCO2 across multiple flowering plant species on plant growth in 9 species and pollen chemistry (%N an estimate for protein content and nutrition in 12 species; secondary chemistry in 5 species) in greenhouses. For pollen nutrition, only buckwheat significantly responded to eCO2, with %N increasing in eCO2; CO2 treatment did not affect pollen amino acid composition but altered secondary metabolites in buckwheat and sunflower. Plant growth under eCO2 exhibited two trends across species: plant height was taller in 44% of species and flower number was affected for 63% of species (3 species with fewer and 2 species with more flowers). The remaining growth metrics (leaf number, above-ground biomass, flower size, and flowering initiation) showed divergent, species-specific responses, if any. Our results indicate that future eCO2 is unlikely to uniformly change pollen chemistry or plant growth across flowering species but may have the potential to alter ecological interactions, or have particularly important effects on specialized pollinators.


Assuntos
Dióxido de Carbono , Pólen , Dióxido de Carbono/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Atmosfera/química , Especificidade da Espécie , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo , Magnoliopsida/fisiologia , Flores/crescimento & desenvolvimento , Flores/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos
19.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210158, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491592

RESUMO

Despite recent advances in understanding the role of biodiversity in ecosystem-service provision, the links between the health of ecosystem-service providers and human health remain more uncertain. During the past decade, an increasing number of studies have argued for the positive impacts of healthy pollinator communities (defined as functionally and genetically diverse species assemblages that are sustained over time) on human health. Here, we begin with a systematic review of these impacts, finding only two studies that concomitantly quantified aspects of pollinator health and human health. Next, we identify relevant research relating to four pathways linking pollinator health and human health: nutrition, medicine provisioning, mental health and environmental quality. These benefits are obtained through improved pollination of nutritious crops and an estimated approximately 28 000 animal-pollinated medicinal plants; the provisioning of pollinator-derived products such as honey; the maintenance of green spaces and biocultural landscapes that improve mental health; and cleaner air, water and food resulting from pollinator-centred initiatives to reduce agrochemical use. We suggest that pollinator diversity could be a proxy for the benefits that landscapes provide to human health. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Ecossistema , Polinização , Animais , Biodiversidade , Produtos Agrícolas , Humanos
20.
Environ Health Perspect ; 130(12): 127003, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36515549

RESUMO

BACKGROUND: Animal pollination supports agricultural production for many healthy foods, such as fruits, vegetables, nuts, and legumes, that provide key nutrients and protect against noncommunicable disease. Today, most crops receive suboptimal pollination because of limited abundance and diversity of pollinating insects. Animal pollinators are currently suffering owing to a host of direct and indirect anthropogenic pressures: land-use change, intensive farming techniques, harmful pesticides, nutritional stress, and climate change, among others. OBJECTIVES: We aimed to model the impacts on current global human health from insufficient pollination via diet. METHODS: We used a climate zonation approach to estimate current yield gaps for animal-pollinated foods and estimated the proportion of the gap attributable to insufficient pollinators based on existing research. We then simulated closing the "pollinator yield gaps" by eliminating the portion of total yield gaps attributable to insufficient pollination. Next, we used an agriculture-economic model to estimate the impacts of closing the pollinator yield gap on food production, interregional trade, and consumption. Finally, we used a comparative risk assessment to estimate the related changes in dietary risks and mortality by country and globally. In addition, we estimated the lost economic value of crop production for three diverse case-study countries: Honduras, Nepal, and Nigeria. RESULTS: Globally, we calculated that 3%-5% of fruit, vegetable, and nut production is lost due to inadequate pollination, leading to an estimated 427,000 (95% uncertainty interval: 86,000, 691,000) excess deaths annually from lost healthy food consumption and associated diseases. Modeled impacts were unevenly distributed: Lost food production was concentrated in lower-income countries, whereas impacts on food consumption and mortality attributable to insufficient pollination were greater in middle- and high-income countries with higher rates of noncommunicable disease. Furthermore, in our three case-study countries, we calculated the economic value of crop production to be 12%-31% lower than if pollinators were abundant (due to crop production losses of 3%-19%), mainly due to lost fruit and vegetable production. DISCUSSION: According to our analysis, insufficient populations of pollinators were responsible for large present-day burdens of disease through lost healthy food consumption. In addition, we calculated that low-income countries lost significant income and crop yields from pollinator deficits. These results underscore the urgent need to promote pollinator-friendly practices for both human health and agricultural livelihoods. https://doi.org/10.1289/EHP10947.


Assuntos
Produtos Agrícolas , Polinização , Animais , Humanos , Agricultura , Mudança Climática , Doenças não Transmissíveis , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA