Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 16(1): 461, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29132374

RESUMO

BACKGROUND: Although larviciding can reduce the number of outdoor biting malaria vector mosquitoes, which may help to prevent residual malaria transmission, the current larvicide repertoire is faced with great challenges to sustainability. The identification of new effective, economical, and biorational larvicides could facilitate maintenance and expansion of the practice of larviciding in integrated malaria vector mosquito control programmes. Interfering RNA molecules represent a novel class of larvicides with untapped potential for sustainable mosquito control. This investigation tested the hypothesis that short interfering RNA molecules can be used as mosquito larvicides. RESULTS: A small interfering RNA (siRNA) screen for larval lethal genes identified siRNAs corresponding to the Anopheles gambiae suppressor of actin (Sac1), leukocyte receptor complex member (lrc), and offtrack (otk) genes. Saccharomyces cerevisiae (baker's yeast) was engineered to produce short hairpin RNAs (shRNAs) for silencing of these genes. Feeding larvae with the engineered yeasts resulted in silenced target gene expression, a severe loss of neural synapses in the larval brain, and high levels of larval mortality. The larvicidal activities of yeast interfering RNA larvicides were retained following heat inactivation and drying of the yeast into user-friendly tablet formulations that induced up to 100% larval mortality in laboratory trials. CONCLUSIONS: Ready-to-use dried inactivated yeast interfering RNA larvicide tablets may someday be an effective and inexpensive addition to malaria mosquito control programmes and a valuable, biorational tool for addressing residual malaria transmission.


Assuntos
Anopheles , Microrganismos Geneticamente Modificados , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , RNA Interferente Pequeno , Saccharomyces cerevisiae , Animais , Anopheles/crescimento & desenvolvimento , Larva , Malária/prevenção & controle , Mosquitos Vetores
2.
BMC Genomics ; 17: 341, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161480

RESUMO

BACKGROUND: Despite substantial progress in mosquito genomic and genetic research, few cis-regulatory elements (CREs), DNA sequences that control gene expression, have been identified in mosquitoes or other non-model insects. Formaldehyde-assisted isolation of regulatory elements paired with DNA sequencing, FAIRE-seq, is emerging as a powerful new high-throughput tool for global CRE discovery. FAIRE results in the preferential recovery of open chromatin DNA fragments that are not bound by nucleosomes, an evolutionarily conserved indicator of regulatory activity, which are then sequenced. Despite the power of the approach, FAIRE-seq has not yet been applied to the study of non-model insects. In this investigation, we utilized FAIRE-seq to profile open chromatin and identify likely regulatory elements throughout the genome of the human disease vector mosquito Aedes aegypti. We then assessed genetic variation in the regulatory elements of dengue virus susceptible (Moyo-S) and refractory (Moyo-R) mosquito strains. RESULTS: Analysis of sequence data obtained through next generation sequencing of FAIRE DNA isolated from A. aegypti embryos revealed >121,000 FAIRE peaks (FPs), many of which clustered in the 1 kb 5' upstream flanking regions of genes known to be expressed at this stage. As expected, known transcription factor consensus binding sites were enriched in the FPs, and of these FoxA1, Hunchback, Gfi, Klf4, MYB/ph3 and Sox9 are most predominant. All of the elements tested in vivo were confirmed to drive gene expression in transgenic Drosophila reporter assays. Of the >13,000 single nucleotide polymorphisms (SNPs) recently identified in dengue virus-susceptible and refractory mosquito strains, 3365 were found to map to FPs. CONCLUSION: FAIRE-seq analysis of open chromatin in A. aegypti permitted genome-wide discovery of CREs. The results of this investigation indicate that FAIRE-seq is a powerful tool for identification of regulatory DNA in the genomes of non-model organisms, including human disease vector mosquitoes.


Assuntos
Aedes/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequências Reguladoras de Ácido Nucleico , Aedes/virologia , Animais , Sítios de Ligação , Mapeamento Cromossômico , Expressão Gênica , Genes Reporter , Variação Genética , Genoma de Inseto , Genômica/métodos , Insetos Vetores/genética , Insetos Vetores/virologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição/metabolismo , Regiões não Traduzidas
3.
Dev Dyn ; 243(11): 1457-69, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25045063

RESUMO

BACKGROUND: Despite the devastating impact of mosquito-borne illnesses on human health, very little is known about mosquito developmental biology, including development of the mosquito visual system. Mosquitoes possess functional adult compound eyes as larvae, a trait that makes them an interesting model in which to study comparative developmental genetics. Here, we functionally characterize visual system development in the dengue and yellow fever vector mosquito Aedes aegypti, in which we use chitosan/siRNA nanoparticles to target the axon guidance gene semaphorin-1a (sema1a). RESULTS: Immunohistochemical analyses revealed the progression of visual sensory neuron targeting that results in generation of the retinotopic map in the mosquito optic lobe. Loss of sema1a function led to optic lobe phenotypes, including defective targeting of visual sensory neurons and failed formation of the retinotopic map. These sema1a knockdown phenotypes correlated with behavioral defects in larval photoavoidance. CONCLUSIONS: The results of this investigation indicate that Sema1a is required for optic lobe development in A. aegypti and highlight the behavioral importance of a functioning visual system in preadult mosquitoes.


Assuntos
Aedes/embriologia , Morfogênese/fisiologia , Nanopartículas , Lobo Óptico de Animais não Mamíferos/fisiologia , Semaforinas/metabolismo , Animais , Quitosana/química , Eletrorretinografia , Imuno-Histoquímica , Nanopartículas/química , Lobo Óptico de Animais não Mamíferos/metabolismo , RNA Interferente Pequeno/química
4.
BMC Dev Biol ; 14: 9, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24552425

RESUMO

BACKGROUND: Essentially nothing is known about the genetic regulation of olfactory system development in vector mosquitoes, which use olfactory cues to detect blood meal hosts. Studies in Drosophila melanogaster have identified a regulatory matrix of transcription factors that controls pupal/adult odorant receptor (OR) gene expression in olfactory receptor neurons (ORNs). However, it is unclear if transcription factors that function in the D. melanogaster regulatory matrix are required for OR expression in mosquitoes. Furthermore, the regulation of OR expression during development of the larval olfactory system, which is far less complex than that of pupae/adults, is not well understood in any insect, including D. melanogaster. Here, we examine the regulation of OR expression in the developing larval olfactory system of Aedes aegypti, the dengue vector mosquito. RESULTS: A. aegypti bears orthologs of eight transcription factors that regulate OR expression in D. melanogaster pupae/adults. These transcription factors are expressed in A. aegypti larval antennal sensory neurons, and consensus binding sites for these transcription factors reside in the 5' flanking regions of A. aegypti OR genes. Consensus binding sites for Single-minded (Sim) are located adjacent to over half the A. aegypti OR genes, suggesting that this transcription factor functions as a major regulator of mosquito OR expression. To functionally test this hypothesis, chitosan/siRNA nanoparticles were used to target sim during larval olfactory development. These experiments demonstrated that Sim positively regulates expression of a large subset of OR genes, including orco, the obligate co-receptor in the assembly and function of heteromeric OR/Orco complexes. Decreased innervation of the antennal lobe was also noted in sim knockdown larvae. These OR expression and antennal lobe defects correlated with a larval odorant tracking behavioral defect. OR expression and antennal lobe defects were also observed in sim knockdown pupae. CONCLUSIONS: The results of this investigation indicate that Sim has multiple functions during larval and pupal olfactory system development in A. aegypti.


Assuntos
Aedes/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , Condutos Olfatórios/metabolismo , RNA Interferente Pequeno/genética , Aedes/crescimento & desenvolvimento , Aedes/metabolismo , Animais , Quitosana/química , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Proteínas de Insetos/metabolismo , Insetos Vetores/crescimento & desenvolvimento , Insetos Vetores/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Nanopartículas/química , Condutos Olfatórios/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/metabolismo , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Interferência de RNA , RNA Interferente Pequeno/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Fungi (Basel) ; 9(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37998862

RESUMO

The global deployment of RNAi yeast insecticides involves transitioning from the use of laboratory yeast strains to more robust strains that are suitable for scaled fermentation. In this investigation, the RNA-guided Cas-CLOVER system was used in combination with Piggybac transposase to produce robust Saccharomyces cerevisiae strains with multiple integrated copies of the Sh.463 short hairpin RNA (shRNA) insecticide expression cassette. This enabled the constitutive high-level expression of an insecticidal shRNA corresponding to a target sequence that is conserved in mosquito Shaker genes, but which is not found in non-target organisms. Top-expressing Cas-CLOVER strains performed well in insecticide trials conducted on Aedes, Culex, and Anopheles larvae and adult mosquitoes, which died following consumption of the yeast. Scaled fermentation facilitated the kilogram-scale production of the yeast, which was subsequently heat-killed and dried. These studies indicate that RNAi yeast insecticide production can be scaled, an advancement that may one day facilitate the global distribution of this new mosquito control intervention.

6.
Sci Rep ; 13(1): 22511, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38110471

RESUMO

G protein-coupled receptors (GPCRs), which regulate numerous intracellular signaling cascades that mediate many essential physiological processes, are attractive yet underexploited insecticide targets. RNA interference (RNAi) technology could facilitate the custom design of environmentally safe pesticides that target GPCRs in select target pests yet are not toxic to non-target species. This study investigates the hypothesis that an RNAi yeast insecticide designed to silence mosquito serotonin receptor 1 (5-HTR1) genes can kill mosquitoes without harming non-target arthropods. 5-HTR.426, a Saccharomyces cerevisiae strain that expresses an shRNA targeting a site specifically conserved in mosquito 5-HTR1 genes, was generated. The yeast can be heat-inactivated and delivered to mosquito larvae as ready-to-use tablets or to adult mosquitoes using attractive targeted sugar baits (ATSBs). The results of laboratory and outdoor semi-field trials demonstrated that consumption of 5-HTR.426 yeast results in highly significant mortality rates in Aedes, Anopheles, and Culex mosquito larvae and adults. Yeast consumption resulted in significant 5-HTR1 silencing and severe neural defects in the mosquito brain but was not found to be toxic to non-target arthropods. These results indicate that RNAi insecticide technology can facilitate selective targeting of GPCRs in intended pests without impacting GPCR activity in non-targeted organisms. In future studies, scaled production of yeast expressing the 5-HTR.426 RNAi insecticide could facilitate field trials to further evaluate this promising new mosquito control intervention.


Assuntos
Aedes , Inseticidas , Animais , Interferência de RNA , Saccharomyces cerevisiae/genética , Inseticidas/farmacologia , RNA Interferente Pequeno/genética , Controle de Mosquitos/métodos , Aedes/genética , Larva/genética , Receptores 5-HT1 de Serotonina/genética
7.
Insects ; 14(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132622

RESUMO

Eco-friendly new mosquito control innovations are critical for the ongoing success of global mosquito control programs. In this study, Sh.463_56.10R, a robust RNA interference (RNAi) yeast insecticide strain that is suitable for scaled fermentation, was evaluated under semi-field conditions. Inactivated and dried Sh.463_56.10R yeast induced significant mortality of field strain Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus larvae in semi-field larvicide trials conducted outdoors in St. Augustine, Trinidad, where 100% of the larvae were dead within 24 h. The yeast was also stably suspended in commercial bait and deployed as an active ingredient in miniature attractive targeted sugar bait (ATSB) station sachets. The yeast ATSB induced high levels of Aedes and Culex mosquito morbidity in semi-field trials conducted in Trinidad, West Indies, as well as in Bangkok, Thailand, in which the consumption of the yeast resulted in adult female mosquito death within 48 h, faster than what was observed in laboratory trials. These findings support the pursuit of large-scale field trials to further evaluate the Sh.463_56.10R insecticide, a member of a promising new class of species-specific RNAi insecticides that could help combat insecticide resistance and support effective mosquito control programs worldwide.

8.
Cold Spring Harb Protoc ; 2022(7): Pdb.prot107808, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35135889

RESUMO

RNA interference (RNAi), an innate regulatory mechanism that is conserved across many eukaryotic species, has been harnessed for experimental gene silencing in many organisms, including mosquitoes. This protocol describes an optimized method for inducing RNAi in adult Aedes aegypti and Anopheles gambiae mosquitoes that involves feeding them a red-colored sugar bait containing small interfering RNA (siRNA). This oral delivery method is less physically disruptive than delivery by subcutaneous injection, and the use of siRNAs (in contrast to long dsRNAs) for RNAi enables the design of molecules that target conserved sites so that gene function can be studied in multiple species. After feeding, the behavioral and morbidity phenotypes that result from the suppression of target gene expression can then be analyzed.


Assuntos
Aedes , Açúcares , Aedes/genética , Animais , Inativação Gênica , Interferência de RNA , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética
9.
Cold Spring Harb Protoc ; 2022(7): Pdb.top107690, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35135890

RESUMO

RNA interference (RNAi) has played a key role in the field of insect functional genomics, a discipline that has enhanced the study of developmental, evolutionary, physiological, and molecular biological phenomena in a wide variety of insects, including disease vector mosquitoes. Here we introduce a recently optimized RNAi procedure in which adult mosquitoes are fed with a colored sugar bait containing small interfering RNA (siRNA). This procedure effectively and economically leads to gene silencing, is technically straightforward, and has been successfully used to characterize a number of genes in adult mosquitoes. We also discuss how, in addition to laboratory applications, this oral RNAi procedure might one day be used in the field for controlling insect pests.


Assuntos
Culicidae , Animais , Culicidae/genética , Inativação Gênica , Insetos/genética , Mosquitos Vetores , Interferência de RNA , RNA de Cadeia Dupla , RNA Interferente Pequeno/genética
10.
Pathogens ; 11(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35215113

RESUMO

Although several emerging mosquito control technologies are dependent on mass releases of adult males, methods of sex-sorting that can be implemented globally have not yet been established. RNAi screens led to the discovery of siRNA, which targets gamma-glutamyl transpeptidase (GGT), a gene which is well conserved in multiple species of mosquitoes and located at the sex-determining M locus region in Aedes aegypti. Silencing the A. aegypti, Aedes albopictus, Anopheles gambiae, Culex pipiens, and Culex quinquefasciatus GGT genes resulted in female larval death, with no significant impact on male survival. Generation of yeast strains that permitted affordable expression and oral delivery of shRNA corresponding to mosquito GGT genes facilitated larval target gene silencing and generated significantly increased 5 males:1 female adult ratios in each species. Yeast targeting a conserved sequence in Culex GGT genes was incorporated into a larval mass-rearing diet, permitting the generation of fit adult male C. pipiens and C. quinquefasciatus, two species for which labor-intensive manual sex separation had previously been utilized. The results of this study indicate that female-specific yeast-based RNAi larvicides may facilitate global implementation of population-based control strategies that require releases of sterile or genetically modified adult males, and that yeast RNAi strategies can be utilized in various species of mosquitoes that have progressed to different stages of sex chromosome evolution.

12.
Dev Genes Evol ; 221(5-6): 281-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21956584

RESUMO

Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector.


Assuntos
Aedes/imunologia , Encéfalo/crescimento & desenvolvimento , Animais , Encéfalo/imunologia , Reações Cruzadas , Drosophila melanogaster/imunologia , Epitopos , Larva , Estágios do Ciclo de Vida , Neurópilo/imunologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Pupa
13.
Parasit Vectors ; 14(1): 338, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174948

RESUMO

BACKGROUND: Clusters of sex-specific loci are predicted to shape the boundaries of the M/m sex-determination locus of the dengue vector mosquito Aedes aegypti, but the identities of these genes are not known. Identification and characterization of these loci could promote a better understanding of mosquito sex chromosome evolution and lead to the elucidation of new strategies for male mosquito sex separation, a requirement for several emerging mosquito population control strategies that are dependent on the mass rearing and release of male mosquitoes. This investigation revealed that the methylthioribulose-1-phosphate dehydratase (MtnB) gene, which resides adjacent to the M/m locus and encodes an evolutionarily conserved component of the methionine salvage pathway, is required for survival of female larvae. RESULTS: Larval consumption of Saccharomyces cerevisiae (yeast) strains engineered to express interfering RNA corresponding to MtnB resulted in target gene silencing and significant female death, yet had no impact on A. aegypti male survival or fitness. Integration of the yeast larvicides into mass culturing protocols permitted scaled production of fit adult male mosquitoes. Moreover, silencing MtnB orthologs in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus revealed a conserved female-specific larval requirement for MtnB among different species of mosquitoes. CONCLUSIONS: The results of this investigation, which may have important implications for the study of mosquito sex chromosome evolution, indicate that silencing MtnB can facilitate sex separation in multiple species of disease vector insects.


Assuntos
Aedes/enzimologia , Anopheles/enzimologia , Culex/enzimologia , Hidroliases/metabolismo , Proteínas de Insetos/metabolismo , Aedes/genética , Aedes/crescimento & desenvolvimento , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Culex/genética , Culex/crescimento & desenvolvimento , Feminino , Hidroliases/genética , Proteínas de Insetos/genética , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Ribulosefosfatos/metabolismo
14.
Sci Rep ; 11(1): 10657, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017069

RESUMO

Although many putative long non-coding RNA (lncRNA) genes have been identified in insect genomes, few of these genes have been functionally validated. A screen for female-specific larvicides that facilitate Aedes aegypti male sex separation uncovered multiple interfering RNAs with target sites in lncRNA genes located in the M/m locus region, including loci within or tightly linked to the sex determination locus. Larval consumption of a Saccharomyces cerevisiae (yeast) strain engineered to express interfering RNA corresponding to lncRNA transcripts resulted in significant female death, yet had no impact on male survival or fitness. Incorporation of the yeast larvicides into mass culturing protocols facilitated scaled production and separation of fit adult males, indicating that yeast larvicides could benefit mosquito population control strategies that rely on mass releases of male mosquitoes. These studies functionally verified a female-specific developmental requirement for M/m locus region lncRNA genes, suggesting that sexually antagonistic lncRNA genes found within this highly repetitive pericentromeric DNA sequence may be contributing to the evolution of A. aegypti sex chromosomes.


Assuntos
Aedes/genética , Genes de Insetos , Loci Gênicos , RNA Longo não Codificante/genética , Processos de Determinação Sexual/genética , Animais , Evolução Molecular , Feminino , Larva/genética , Masculino , RNA Interferente Pequeno/metabolismo , Cromossomos Sexuais/genética , Leveduras
15.
Pathogens ; 10(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684200

RESUMO

Prevention of mosquito-borne infectious diseases will require new classes of environmentally safe insecticides and novel mosquito control technologies. Saccharomyces cerevisiae was engineered to express short hairpin RNA (shRNA) corresponding to mosquito Rbfox1 genes. The yeast induced target gene silencing, resulting in larval death that was observed in both laboratory and outdoor semi-field trials conducted on Aedes aegypti. High levels of mortality were also observed during simulated field trials in which adult females consumed yeast delivered through a sugar bait. Mortality correlated with defects in the mosquito brain, in which a role for Rbfox1 as a positive regulator of Notch signaling was identified. The larvicidal and adulticidal activities of the yeast were subsequently confirmed in trials conducted on Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus, yet the yeast had no impact on survival of select non-target arthropods. These studies indicate that yeast RNAi pesticides targeting Rbfox1 could be further developed as broad-based mosquito larvicides and adulticides for deployment in integrated biorational mosquito control programs. These findings also suggest that the species-specificity of attractive targeted sugar baits, a new paradigm for vector control, could potentially be enhanced through RNAi technology, and specifically through the use of yeast-based interfering RNA pesticides.

16.
Insects ; 12(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821787

RESUMO

Concerns for widespread insecticide resistance and the unintended impacts of insecticides on nontarget organisms have generated a pressing need for mosquito control innovations. A yeast RNAi-based insecticide that targets a conserved site in mosquito Irx family genes, but which has not yet been identified in the genomes of nontarget organisms, was developed and characterized. Saccharomyces cerevisiae constructed to express short hairpin RNA (shRNA) matching the target site induced significant Aedes aegypti larval death in both lab trials and outdoor semi-field evaluations. The yeast also induced high levels of mortality in adult females, which readily consumed yeast incorporated into an attractive targeted sugar bait (ATSB) during simulated field trials. A conserved requirement for Irx function as a regulator of proneural gene expression was observed in the mosquito brain, suggesting a possible mode of action. The larvicidal and adulticidal properties of the yeast were also verified in Aedes albopictus, Anopheles gambiae, and Culexquinquefasciatus mosquitoes, but the yeast larvicide was not toxic to other nontarget arthropods. These results indicate that further development and evaluation of this technology as an ecofriendly control intervention is warranted, and that ATSBs, an emerging mosquito control paradigm, could potentially be enriched through the use of yeast-based RNAi technology.

17.
PLoS Negl Trop Dis ; 14(7): e0008479, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687496

RESUMO

The existing mosquito pesticide repertoire faces great challenges to sustainability, and new classes of pesticides are vitally needed to address established and emerging mosquito-borne infectious diseases. RNA interference- (RNAi-) based pesticides are emerging as a promising new biorational mosquito control strategy. In this investigation, we describe characterization of an interfering RNA pesticide (IRP) corresponding to the mosquito Shaker (Sh) gene, which encodes an evolutionarily conserved voltage-gated potassium channel subunit. Delivery of the IRP to Aedes aegypti adult mosquitoes in the form of siRNA that was injected or provided as an attractive toxic sugar bait (ATSB) led to Sh gene silencing that resulted in severe neural and behavioral defects and high levels of adult mortality. Likewise, when provided to A. aegypti larvae in the form of short hairpin RNA (shRNA) expressed in Saccharomyces cerevisiae (baker's yeast) that had been formulated into a dried inactivated yeast tablet, the yeast IRP induced neural defects and larval death. Although the Sh IRP lacks a known target site in humans or other non-target organisms, conservation of the target site in the Sh genes of multiple mosquito species suggested that it may function as a biorational broad-range mosquito insecticide. In support of this, the Sh IRP induced both adult and larval mortality in treated Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus mosquitoes, but was not toxic to non-target arthropods. These studies indicated that IRPs targeting Sh could one day be used in integrated biorational mosquito control programs for the prevention of multiple mosquito-borne illnesses. The results of this investigation also suggest that the species-specificity of ATSB technology, a new paradigm for vector control, could be enhanced through the use of RNAi-based pesticides.


Assuntos
Agentes de Controle Biológico/farmacologia , Culicidae/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Oligonucleotídeos/farmacologia , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , DNA , Daphnia , Feminino , Inativação Gênica , Larva/efeitos dos fármacos , RNA Interferente Pequeno , Superfamília Shaker de Canais de Potássio/genética
18.
Insect Biochem Mol Biol ; 120: 103359, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169582

RESUMO

G protein-coupled receptors (GPCRs), key regulators of a variety of critical biological processes, are attractive targets for insecticide development. Given the importance of these receptors in many organisms, including humans, it is critical that novel pesticides directed against GPCRs are designed to be species-specific. Here, we present characterization of an interfering RNA pesticide (IRP) targeting the mosquito GPCR-encoding dopamine 1 receptor (dop1) genes. A small interfering RNA corresponding to dop1 was identified in a screen for IRPs that kill Aedes aegypti during both the adult and larval stages. The 25 bp sequence targeted by this IRP is conserved in the dop1 genes of multiple mosquito species, but not in non-target organisms, indicating that it could function as a biorational mosquito insecticide. Aedes aegypti adults treated through microinjection or attractive toxic sugar bait delivery of small interfering RNA corresponding to the target site exhibited severe neural and behavioral defects and high levels of adult mortality. Likewise, A. aegypti larval consumption of dried inactivated yeast tablets prepared from a Saccharomyces cerevisiae strain engineered to express short hairpin RNA corresponding to the dop1 target site resulted in severe neural defects and larval mortality. Aedes albopictus and Anopheles gambiae adult and larval mortality was also observed following treatment with dop1 IRPs, which were not toxic to non-target arthropods. The results of this investigation indicate that dop1 IRPs can be used for species-specific targeting of dop1 GPCRs and may represent a new biorational strategy for control of both adult and larval mosquitoes.


Assuntos
Aedes , Anopheles , Proteínas de Insetos/genética , Inseticidas/farmacologia , Controle de Mosquitos , RNA Interferente Pequeno/farmacologia , Receptores Dopaminérgicos/genética , Animais , Sequência Conservada , Feminino , Proteínas de Insetos/metabolismo , Interferência de RNA , Receptores Dopaminérgicos/metabolismo
19.
Methods Mol Biol ; 1858: 213-231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30414120

RESUMO

The mosquito genome projects facilitated research in new facets of mosquito biology, including functional genetic studies in the dengue and Zika virus vector Aedes aegypti and the primary African malaria vector Anopheles gambiae. RNA interference (RNAi) has facilitated gene silencing experiments in both of these disease vector mosquito species and could one day be applied as a new method of vector control. Here, we describe a procedure for the genetic engineering of Saccharomyces cerevisiae (baker's yeast) that express short hairpin RNA (shRNA) corresponding to mosquito target genes of interest. Following cultivation, which facilitates inexpensive propagation of shRNA, the yeast is inactivated and prepared in a ready-to-use dry tablet formulation that is fed to mosquito larvae. Ingestion of the yeast tablets results in effective larval target gene silencing. This technically straightforward and affordable technique may be applicable to a wide variety of mosquito species and potentially to other arthropods that feed on yeast.


Assuntos
Anopheles/genética , Sistemas de Liberação de Medicamentos , Inativação Gênica , Malária/prevenção & controle , Proteínas de Protozoários/antagonistas & inibidores , RNA Interferente Pequeno/administração & dosagem , Saccharomyces cerevisiae , Animais , Larva , Malária/parasitologia , Controle de Mosquitos , Mosquitos Vetores/genética , Proteínas de Protozoários/genética , RNA Interferente Pequeno/genética
20.
PLoS Negl Trop Dis ; 13(5): e0007422, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107878

RESUMO

New mosquito control strategies are vitally needed to address established and emerging arthropod-borne infectious diseases. Here we describe the characterization of a yeast interfering RNA larvicide that was developed through the genetic engineering of Saccharomyces cerevisiae (baker's yeast) to express a short hairpin RNA targeting the Aedes aegypti synaptotagmin (Aae syt) gene. The larvicide effectively silences the Aae syt gene, causes defects at the larval neural synapse, and induces high rates of A. aegypti larval mortality in laboratory, simulated-field, and semi-field trials. Conservation of the interfering RNA target site in multiple mosquito species, but not in humans or other non-target species, suggested that it may function as a broad-range mosquito larvicide. In support of this, consumption of the yeast interfering RNA larvicide was also found to induce high rates of larval mortality in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus mosquito larvae. The results of these studies suggest that this biorational yeast interfering RNA larvicide may represent a new intervention that can be used to combat multiple mosquito vectors of human diseases.


Assuntos
Proteínas de Insetos/genética , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Controle Biológico de Vetores/métodos , Interferência de RNA , Saccharomyces cerevisiae/genética , Sinaptotagminas/genética , Aedes/genética , Aedes/metabolismo , Aedes/microbiologia , Animais , Anopheles/genética , Anopheles/metabolismo , Anopheles/microbiologia , Culex/genética , Culex/metabolismo , Culex/microbiologia , Feminino , Engenharia Genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Larva/virologia , Masculino , Mosquitos Vetores/metabolismo , Mosquitos Vetores/virologia , Saccharomyces cerevisiae/metabolismo , Sinaptotagminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA