Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nanotechnology ; 28(4): 045605, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27997367

RESUMO

In As atmosphere, we analyzed the crystallization dynamics during post-growth annealing of Ga droplets residing at the top of self-assisted GaAs nanowires grown by molecular beam epitaxy. The final crystallization steps, fundamental to determining the top facet nanowire morphology, proceeded via a balance of Ga crystallization via vapor-liquid-solid and layer-by-layer growth around the droplet, promoted by Ga diffusion out of the droplet perimeter, As desorption, and diffusion dynamics. By controlling As flux and substrate temperature the transformation of Ga droplets into nanowire segments with a top surface flat and parallel to the substrate was achieved, thus opening the possibility to realize atomically sharp vertical heterostructures in III-As self-assisted nanowires through group III exchange.

2.
ACS Nano ; 12(3): 2521-2530, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29512386

RESUMO

Inspired by the densely covered capillary structure inside a dog's nose, we report an artificial nanostructure, i. e., poly(sodium p-styrenesulfonate)-functionalized reduced graphene oxide nanoscrolls (PGNS), with high structural perfection and efficient gas sensing applications. A facile supramolecular assembly is introduced to functionalize graphene with the functional polymer, combined with the lyophilization technique to massively transform the planar graphene-based nanosheets to nanoscrolls. Detailed characterizations reveal that the bioinspired nanoscrolls exhibit a wide-open tubular morphology with uniform dimensions that is structurally distinct from the previously reported ones. The detailed morphologies of the graphene-based nanosheets in each scrolling stage during lyophilization are monitored by cryo-SEM. This unravels an asymmetric polymer-induced graphene scrolling mechanism including the corresponding scrolling process, which is directly presented by molecular dynamics simulations. The fabricated PGNS sensors exhibit superior gas sensing performance with reliable repeatability, excellent linear sensibility, and, especially, an ultrahigh response ( Ra/ Rg = 5.39, 10 ppm) toward NO2. The supramolecular assembly combined with the lyophilization technique to fabricate PGNS provides a strategy to design biomimetic materials for gas sensors and chemical trace detectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA